Clear Filters
Clear Filters

The issue of optimization (minimization) of the average relative error between experimental and calculated data

143 views (last 30 days)
hello
I want to share the difficulties that I faced. Can someone help
problem statement:
there is a 'x' column where the values ​​of the independent variable are written and there is a 'y' column where the experimental values ​​of the dependent variable are written.
approximation model is considered:
y_calculate=A*x^B+C,
and based on this model, an objective function is created, which is equal to the average value of the relative deviations between y and y_calculate:
error_function = mean(abs(y - y_calculate)) / y)=mean(abs(y - =A*x^B+C)) / y);
Our goal is to select parameters A,B,C in such a way that 'error_function' takes the value of the global minimum.
I calculated the optimal values ​​of A, B, C and got:
A = 85.5880, B = -0.0460, C = 4.8824,
at which error function value for optimized parameters: 0.0285.
but I know in advance the specific values ​​of A, B, C:
A = 1005.6335852931, B = -1.59745963925582, C = 73.54149744754400,
at which error function value for specific parameters: 0.002680472178434,
which is much better than with optimization
Below is the code with visualization, which confirms the above.
clear
close all
% Data
x = [7.3392, 14.6784, 22.0176, 29.3436, 36.6828, 44.0088, 51.3348, 58.674, 66, 73.3392, 80.6652, 88.0044, 95.3304, 102.6696, 109.9956, 117.3348, 124.6608, 132];
y = [115.1079, 87.7698, 80.5755, 78.1611, 76.5743, 75.7074, 74.9375, 74.9453, 74.59, 74.2990, 74.2990, 74.2990, 74.2990, 74.2990, 74.2990, 74.2990, 74.2990, 74.2990];
% Initial guesses for parameters A, B, C
initial_guess = [1, 1, 1];
% Error function
error_function = @(params) mean(abs(y - (params(1) * x.^params(2) + params(3))) ./ y);
% Optimization of parameters
optimized_params = fminsearch(error_function, initial_guess);
% Results of optimization
A_optimized = optimized_params(1);
B_optimized = optimized_params(2);
C_optimized = optimized_params(3);
% Calculation of the fitted function for optimized parameters
y_calculate_optimized = A_optimized * x.^B_optimized + C_optimized;
% Calculate and display the error function value for optimized parameters
value_error_optimized = error_function(optimized_params);
fprintf('Optimized parameters:\nA = %.4f\nB = %.4f\nC = %.4f\n', A_optimized, B_optimized, C_optimized);
fprintf(' error function value for optimized parameters: %.4f\n', value_error_optimized);
% Other specific parameters A, B, C
A_specific = 1005.63358529310;
B_specific = -1.59745963925582;
C_specific = 73.541497447544;
% Calculation of the fitted function for specific parameters
y_calculate_specific = A_specific * x.^B_specific + C_specific;
% Calculate and display the error function value for specific parameters
value_error_specific = error_function([A_specific, B_specific, C_specific]);
fprintf('Specific parameters:\nA = %.10f\nB = %.14f\nC = %.14f\n', A_specific, B_specific, C_specific);
fprintf(' error function value for specific parameters: %.4f\n', value_error_specific);
% Visualization
figure;
plot(x, y, 'bo-', 'DisplayName', 'Experimental data');
hold on;
plot(x, y_calculate_optimized, 'r--', 'DisplayName', 'Fitted model (Optimized)');
plot(x, y_calculate_specific, 'g-.', 'DisplayName', 'Fitted model (Specific)');
xlabel('x');
ylabel('y');
legend('Location', 'best');
title('Approximation of experimental data');
grid on;
Obviously, my optimization code does not lead to a global minimum of the objective function, since there is a better approximation for specific values ​​of A,B,C. Maybe this is caused by a random selection of the initial values ​​of the parameters A=1, B=1, c=1 and therefore my code is stuck in a local minimum?
who can write a code that will select the A,B,C parameters so as to achieve the global minimum of the target function 'error_function', for any initial iteration data of the variables A,B,C. Thoughts for testing: the value of the target function 'error_function' should not be worse (that is, more) than 0.002680472178434, which is obtained with the specific value of A,B,C: A = 1005.6335852931, B = -1.59745963925582, C = 73.54149744754400

Accepted Answer

Matt J
Matt J on 22 Aug 2024
Edited: Matt J on 5 Sep 2024
If you download minL1lin from
then you can do,
% Data
x = [7.3392, 14.6784, 22.0176, 29.3436, 36.6828, 44.0088, 51.3348, 58.674, 66, 73.3392, 80.6652, 88.0044, 95.3304, 102.6696, 109.9956, 117.3348, 124.6608, 132];
y = [115.1079, 87.7698, 80.5755, 78.1611, 76.5743, 75.7074, 74.9375, 74.9453, 74.59, 74.2990, 74.2990, 74.2990, 74.2990, 74.2990, 74.2990, 74.2990, 74.2990, 74.2990];
% Initial guess for parameter B
initial_guess = 1;
% Error function
error_function = @(B) objFun(B, x,y);
% Optimization of parameters
B = fminsearch(error_function, initial_guess);
[fval,ABC]=error_function(B);
[A,B,C]=deal(ABC{:})
A = 1.0460e+03
B = -1.6184
C = 73.5535
fval
fval = 0.0025
function [fval,p]=objFun(theta, x,y)
arguments
theta; x (:,1); y(:,1);
end
B=theta;
d=ones(size(y));
Q=[x.^B, d]./y;
[AC,fval]=minL1lin(Q,d,[],[],[],[],[],[],[],optimoptions('linprog','Display','off'));
fval=fval/numel(y);
A=AC(1); C=AC(2);
p={A, B, C};
end
  31 Comments
roborrr
roborrr on 26 Sep 2024 at 7:29
and construct Q this time using x,y, and z.
in the linear part of the model z_calculate = A * exp(E/ (8.314 * y)) * (1 + k * x^n) there is only the coefficient A, and the free term C is missing. the nonlinear part of the model depends on two variables at once. how to construct Q? and how to replace those commands where C is present? I don't know the syntax, how to do this.
Matt J
Matt J on 26 Sep 2024 at 12:37
Edited: Matt J on 26 Sep 2024 at 13:53
The role of minL1lin is to solve for the linear parameters, for a fixed and given set of values of the nonlinear parameters. So, if A is your only linear parameter, then Q should contain coefficients only for A. Bounds on the nonlinear parameters should be given to fminsearchbnd as before.
function [fval,p]=objFun(theta, x,y,z)
x=x(:);y=y(:);z=z(:); theta=theta(:)';
E=theta(1); k=theta(2); n=theta(3);
M=numel(z);
d=ones(M,1);
Q= exp(E./(8.314 .* y)) .* (1 + k .* x.^n) ./z;
lb_A=___;
ub_A=___;
%Solve the linear part of the model
[A,fval]=minL1lin(Q,d,[],[],[],[],lb_A,ub_A,[],optimoptions('linprog','Display','off'));
fval=fval/M;
p={A, theta};
end

Sign in to comment.

More Answers (0)

Products


Release

R2018b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!