Setting constraint between estimation parameters in nonlinear grey box estimation
34 views (last 30 days)
Show older comments
tran hoan an
on 5 Dec 2025 at 14:53
Commented: tran hoan an
on 6 Dec 2025 at 8:26
I am trying to estimate an ODE with 9 parameters (1 fixed), denotes the params 5, 6, 7 as c1, c2, c3 respectively. I would like to impose a constraint on them as -\sqrt(4*c1*c3)< c2 < -\sqrt(3*c1*c3) (constraint for the third-order polynomial f(x) to have 2 extremum points x1, x2, lying on the right, and f(x1)> f(x2) >0 ). I am setting the desired idea in the below code:
But the estimated results of c1, c2, c3 does not satisfy the constraint I am imposing. I am really appriciate any idea of diagnoising this issue, thank you so much!
params =
struct with fields:
a1: 21.2434
a2: 0.0359
a3: 66
a4: 0.8672
c1: 8.2572e+03
c2: -1.3108e+04
c3: 7.2092e+03
p2p: 8.5374
p2n: 58.0616
>> -sqrt(3*8.2572e+03*7.2092e+03)
ans =
-1.3364e+04
Here is the setup code
%%
ModelFile = 'HR_model_Conv_cadence_quad_c';
%p1 = 0.1;
%p2p = 10;
%p2n = 2;
Order = [2 2 1]; % 2 output, 2 input, 1 state
%Order = [1 2 1]; % 1 output, 2 input, 1 state - neglect the HR dot
Params_guess = [a1; a2; a3; a4; c1; c2; c3; p2p; p2n]
InitialStates_guess = x0
Ts_model = 0;
nlgr_conv = idnlgrey(ModelFile,Order, Params_guess,InitialStates_guess,Ts_model,'Name','Heart_Rate_Conv');
nlgr_conv.SimulationOptions.Solver = 'ode45';%ode15s
% a1
nlgr_conv.Parameters(1).Minimum = 0.01; %positive
% a2
nlgr_conv.Parameters(2).Minimum = 0.001;
% a3
nlgr_conv.Parameters(3).Minimum = Subject.HR_min;
nlgr_conv.Parameters(3).Fixed = true;
% a4
nlgr_conv.Parameters(4).Minimum = 0.1;
% c1
nlgr_conv.Parameters(5).Minimum = 0.001;
% c2
nlgr_conv.Parameters(6).Maximum = -sqrt(3*nlgr_conv.Parameters(5).Value * nlgr_conv.Parameters(7).Value );
nlgr_conv.Parameters(6).Minimum = -sqrt(4*nlgr_conv.Parameters(5).Value * nlgr_conv.Parameters(7).Value );
% c3
nlgr_conv.Parameters(7).Minimum = 0.001;
%p2p
nlgr_conv.Parameters(8).Minimum = 0.001;
%p2n
nlgr_conv.Parameters(9).Minimum = 0.001;
nlgr_conv = setinit(nlgr_conv, 'Fixed', {false}); % Estimate the initial states.
opt = nlgreyestOptions('Display', 'on');
opt.SearchOptions.MaxIterations = 1000;
opt.OutputWeight = diag([1 4]);
nlgr_conv = nlgreyest(meas_data, nlgr_conv, opt);
0 Comments
Accepted Answer
Torsten
on 5 Dec 2025 at 21:42
Edited: Torsten
on 6 Dec 2025 at 2:00
I doubt that you can set lower and upper bounds on parameters as nonlinear functions of other parameters. In my opinion, Parameters.Minimum and Parameters.Maximum must be fixed real scalars.
This is confirmed by the description of "Parameters" under "Properties" here:
I guess that in the lines
nlgr_conv.Parameters(6).Maximum = -sqrt(3*nlgr_conv.Parameters(5).Value * nlgr_conv.Parameters(7).Value );
nlgr_conv.Parameters(6).Minimum = -sqrt(4*nlgr_conv.Parameters(5).Value * nlgr_conv.Parameters(7).Value );
the initial values for parameters 5 and 7 are used to set lower and upper bounds on parameter 6. But since your code doesn't show the initial values you use for the parameters, I cannot test this.
If you want to set more complicated constraints for the parameters than just fixed bounds, you will have to couple the ode integrator (e.g. "ode45") and "fmincon" (using "nonlcon" to set the nonlinear parameter constraints) directly.
More Answers (0)
See Also
Categories
Find more on Systems of Nonlinear Equations in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!