Info

This question is closed. Reopen it to edit or answer.

Problem with the solutions of two nonlinear equations

1 view (last 30 days)
I have a problem with the solutions of the blow two nonlinear equations.I used 'ezplot' function to see the intersection of these two equations and I saw there are numerous intersections between them. So, there are numerous solutions to the system of these two equations,but the solutions are finite. I used 'solve' function to solve this system,but it gives it only one solution! How can I see all the solutions? (the two variables are l1 and l2)
equation1=(11.390625*(-3.333333334*tan(10/3*pi*l1)+3.611111112*tan(10/3*pi*l1)^2*tan(10/3*pi*l2))^2*(3.25*tan(10/3*pi*l1)*tan(10/3*pi*l2)+1.5*tan(10/3*pi*l1)^2-1.5)^2/(36.75390625*tan(10/3*pi*l1)^4*tan(10/3*pi*l2)^2-30.4687500*tan(10/3*pi*l1)^3*tan(10/3*pi*l2)+20.2500*tan(10/3*pi*l1)^4+40.5000*tan(10/3*pi*l1)^2*tan(10/3*pi*l2)^2+54.562500*tan(10/3*pi*l1)^2+20.2500*tan(10/3*pi*l2)^2+20.2500)^2+5.0625*(-1.666666667*tan(10/3*pi*l1)+1.805555556*tan(10/3*pi*l1)^2*tan(10/3*pi*l2))^2*(6.0625*tan(10/3*pi*l1)^2*tan(10/3*pi*l2)-9.750*tan(10/3*pi*l1)-4.50*tan(10/3*pi*l2))^2/(36.75390625*tan(10/3*pi*l1)^4*tan(10/3*pi*l2)^2-30.4687500*tan(10/3*pi*l1)^3*tan(10/3*pi*l2)+20.2500*tan(10/3*pi*l1)^4+40.5000*tan(10/3*pi*l1)^2*tan(10/3*pi*l2)^2+54.562500*tan(10/3*pi*l1)^2+20.2500*tan(10/3*pi*l2)^2+20.2500)^2)^(1/2)-.1
equation2=1/2*(22.781250*(-3.333333334*tan(10/3*pi*l1)+3.611111112*tan(10/3*pi*l1)^2*tan(10/3*pi*l2))*(3.25*tan(10/3*pi*l1)*tan(10/3*pi*l2)+1.5*tan(10/3*pi*l1)^2-1.5)^2*(-.1111111111e-7*(1+tan(10/3*pi*l1)^2)*l1+.2407407408e-7*tan(10/3*pi*l1)*tan(10/3*pi*l2)*(1+tan(10/3*pi*l1)^2)*l1+.1203703704e-7*tan(10/3*pi*l1)^2*(1+tan(10/3*pi*l2)^2)*l2)/(36.75390625*tan(10/3*pi*l1)^4*tan(10/3*pi*l2)^2-30.4687500*tan(10/3*pi*l1)^3*tan(10/3*pi*l2)+20.2500*tan(10/3*pi*l1)^4+40.5000*tan(10/3*pi*l1)^2*tan(10/3*pi*l2)^2+54.562500*tan(10/3*pi*l1)^2+20.2500*tan(10/3*pi*l2)^2+20.2500)^2+22.781250*(-3.333333334*tan(10/3*pi*l1)+3.611111112*tan(10/3*pi*l1)^2*tan(10/3*pi*l2))^2*(3.25*tan(10/3*pi*l1)*tan(10/3*pi*l2)+1.5*tan(10/3*pi*l1)^2-1.5)*(.1083333333e-7*(1+tan(10/3*pi*l1)^2)*l1*tan(10/3*pi*l2)+.1083333333e-7*tan(10/3*pi*l1)*(1+tan(10/3*pi*l2)^2)*l2+.1000000000e-7*tan(10/3*pi*l1)*(1+tan(10/3*pi*l1)^2)*l1)/(36.75390625*tan(10/3*pi*l1)^4*tan(10/3*pi*l2)^2-30.4687500*tan(10/3*pi*l1)^3*tan(10/3*pi*l2)+20.2500*tan(10/3*pi*l1)^4+40.5000*tan(10/3*pi*l1)^2*tan(10/3*pi*l2)^2+54.562500*tan(10/3*pi*l1)^2+20.2500*tan(10/3*pi*l2)^2+20.2500)^2-22.781250*(-3.333333334*tan(10/3*pi*l1)+3.611111112*tan(10/3*pi*l1)^2*tan(10/3*pi*l2))^2*(3.25*tan(10/3*pi*l1)*tan(10/3*pi*l2)+1.5*tan(10/3*pi*l1)^2-1.5)^2*(.4900520833e-6*tan(10/3*pi*l1)^3*tan(10/3*pi*l2)^2*(1+tan(10/3*pi*l1)^2)*l1+.2450260417e-6*tan(10/3*pi*l1)^4*tan(10/3*pi*l2)*(1+tan(10/3*pi*l2)^2)*l2-.3046875000e-6*tan(10/3*pi*l1)^2*tan(10/3*pi*l2)*(1+tan(10/3*pi*l1)^2)*l1-.1015625000e-6*tan(10/3*pi*l1)^3*(1+tan(10/3*pi*l2)^2)*l2+.2700000000e-6*tan(10/3*pi*l1)^3*(1+tan(10/3*pi*l1)^2)*l1+.2700000000e-6*tan(10/3*pi*l1)*tan(10/3*pi*l2)^2*(1+tan(10/3*pi*l1)^2)*l1+.2700000000e-6*tan(10/3*pi*l1)^2*tan(10/3*pi*l2)*(1+tan(10/3*pi*l2)^2)*l2+.3637500000e-6*tan(10/3*pi*l1)*(1+tan(10/3*pi*l1)^2)*l1+.1350000000e-6*tan(10/3*pi*l2)*(1+tan(10/3*pi*l2)^2)*l2)/(36.75390625*tan(10/3*pi*l1)^4*tan(10/3*pi*l2)^2-30.4687500*tan(10/3*pi*l1)^3*tan(10/3*pi*l2)+20.2500*tan(10/3*pi*l1)^4+40.5000*tan(10/3*pi*l1)^2*tan(10/3*pi*l2)^2+54.562500*tan(10/3*pi*l1)^2+20.2500*tan(10/3*pi*l2)^2+20.2500)^3+10.1250*(-1.666666667*tan(10/3*pi*l1)+1.805555556*tan(10/3*pi*l1)^2*tan(10/3*pi*l2))*(6.0625*tan(10/3*pi*l1)^2*tan(10/3*pi*l2)-9.750*tan(10/3*pi*l1)-4.50*tan(10/3*pi*l2))^2*(-.5555555557e-8*(1+tan(10/3*pi*l1)^2)*l1+.1203703704e-7*tan(10/3*pi*l1)*tan(10/3*pi*l2)*(1+tan(10/3*pi*l1)^2)*l1+.6018518520e-8*tan(10/3*pi*l1)^2*(1+tan(10/3*pi*l2)^2)*l2)/(36.75390625*tan(10/3*pi*l1)^4*tan(10/3*pi*l2)^2-30.4687500*tan(10/3*pi*l1)^3*tan(10/3*pi*l2)+20.2500*tan(10/3*pi*l1)^4+40.5000*tan(10/3*pi*l1)^2*tan(10/3*pi*l2)^2+54.562500*tan(10/3*pi*l1)^2+20.2500*tan(10/3*pi*l2)^2+20.2500)^2+10.1250*(-1.666666667*tan(10/3*pi*l1)+1.805555556*tan(10/3*pi*l1)^2*tan(10/3*pi*l2))^2*(6.0625*tan(10/3*pi*l1)^2*tan(10/3*pi*l2)-9.750*tan(10/3*pi*l1)-4.50*tan(10/3*pi*l2))*(.4041666667e-7*tan(10/3*pi*l1)*tan(10/3*pi*l2)*(1+tan(10/3*pi*l1)^2)*l1+.2020833333e-7*tan(10/3*pi*l1)^2*(1+tan(10/3*pi*l2)^2)*l2-.3250000000e-7*(1+tan(10/3*pi*l1)^2)*l1-.1500000000e-7*(1+tan(10/3*pi*l2)^2)*l2)/(36.75390625*tan(10/3*pi*l1)^4*tan(10/3*pi*l2)^2-30.4687500*tan(10/3*pi*l1)^3*tan(10/3*pi*l2)+20.2500*tan(10/3*pi*l1)^4+40.5000*tan(10/3*pi*l1)^2*tan(10/3*pi*l2)^2+54.562500*tan(10/3*pi*l1)^2+20.2500*tan(10/3*pi*l2)^2+20.2500)^2-10.1250*(-1.666666667*tan(10/3*pi*l1)+1.805555556*tan(10/3*pi*l1)^2*tan(10/3*pi*l2))^2*(6.0625*tan(10/3*pi*l1)^2*tan(10/3*pi*l2)-9.750*tan(10/3*pi*l1)-4.50*tan(10/3*pi*l2))^2*(.4900520833e-6*tan(10/3*pi*l1)^3*tan(10/3*pi*l2)^2*(1+tan(10/3*pi*l1)^2)*l1+.2450260417e-6*tan(10/3*pi*l1)^4*tan(10/3*pi*l2)*(1+tan(10/3*pi*l2)^2)*l2-.3046875000e-6*tan(10/3*pi*l1)^2*tan(10/3*pi*l2)*(1+tan(10/3*pi*l1)^2)*l1-.1015625000e-6*tan(10/3*pi*l1)^3*(1+tan(10/3*pi*l2)^2)*l2+.2700000000e-6*tan(10/3*pi*l1)^3*(1+tan(10/3*pi*l1)^2)*l1+.2700000000e-6*tan(10/3*pi*l1)*tan(10/3*pi*l2)^2*(1+tan(10/3*pi*l1)^2)*l1+.2700000000e-6*tan(10/3*pi*l1)^2*tan(10/3*pi*l2)*(1+tan(10/3*pi*l2)^2)*l2+.3637500000e-6*tan(10/3*pi*l1)*(1+tan(10/3*pi*l1)^2)*l1+.1350000000e-6*tan(10/3*pi*l2)*(1+tan(10/3*pi*l2)^2)*l2)/(36.75390625*tan(10/3*pi*l1)^4*tan(10/3*pi*l2)^2-30.4687500*tan(10/3*pi*l1)^3*tan(10/3*pi*l2)+20.2500*tan(10/3*pi*l1)^4+40.5000*tan(10/3*pi*l1)^2*tan(10/3*pi*l2)^2+54.562500*tan(10/3*pi*l1)^2+20.2500*tan(10/3*pi*l2)^2+20.2500)^3)/(11.390625*(-3.333333334*tan(10/3*pi*l1)+3.611111112*tan(10/3*pi*l1)^2*tan(10/3*pi*l2))^2*(3.25*tan(10/3*pi*l1)*tan(10/3*pi*l2)+1.5*tan(10/3*pi*l1)^2-1.5)^2/(36.75390625*tan(10/3*pi*l1)^4*tan(10/3*pi*l2)^2-30.4687500*tan(10/3*pi*l1)^3*tan(10/3*pi*l2)+20.2500*tan(10/3*pi*l1)^4+40.5000*tan(10/3*pi*l1)^2*tan(10/3*pi*l2)^2+54.562500*tan(10/3*pi*l1)^2+20.2500*tan(10/3*pi*l2)^2+20.2500)^2+5.0625*(-1.666666667*tan(10/3*pi*l1)+1.805555556*tan(10/3*pi*l1)^2*tan(10/3*pi*l2))^2*(6.0625*tan(10/3*pi*l1)^2*tan(10/3*pi*l2)-9.750*tan(10/3*pi*l1)-4.50*tan(10/3*pi*l2))^2/(36.75390625*tan(10/3*pi*l1)^4*tan(10/3*pi*l2)^2-30.4687500*tan(10/3*pi*l1)^3*tan(10/3*pi*l2)+20.2500*tan(10/3*pi*l1)^4+40.5000*tan(10/3*pi*l1)^2*tan(10/3*pi*l2)^2+54.562500*tan(10/3*pi*l1)^2+20.2500*tan(10/3*pi*l2)^2+20.2500)^2)^(1/2)

Answers (1)

Walter Roberson
Walter Roberson on 3 Jul 2015
The number of values where they intersect is definitely not finite if you include complex numbers, and it looks to me as if it might not be finite even if you restrict to real values.
You have two expressions in two unknowns. You ask when they equal each other. That is equivalent to asking when the first one minus the second one is zero. But that subtraction is a single expression in two variables, so there are an infinite number of complex solutions.
To establish that there are a finite number of real-valued solutions, it would be necessary to prove that there is some combination of values beyond which one of the expressions is strictly greater than the other. The second expression stays close to zero but divergently so going increasingly positive and negative. Still there might be a way to prove that the first is always greater than the second outside of a finite region where the zeros could be counted. At the moment I would not rule it out but it looks unlikely from the graphs I do.
  9 Comments
Walter Roberson
Walter Roberson on 5 Jul 2015
Assuming that the "j" there is sqrt(-1), then the magnitude of C is abs(A/B) . It is possible to solve for that being equal to 1/10, solving for L1. The result is a quartic in L2, so there are 4 exact solutions.
If you use the given z value, then: if you substitute the solutions for L1 in to diff(A/B,w), then there are no solutions for that being 0. There are places where diff(A/B,w) has its real component be 0, and there are places where its imaginary component is 0, but there are no places where both are 0. To determine this, take abs() of the diff() and plot that abs() over -10 to +10 and it can be seen that the magnitudes wobble but tend away from 0. The minima is on one of the roots, at about +/- 0.5858 , but that minima is on the order of 1.2535E-10 for the magnitude.
The second equation might have zeros, but it does not have them in the places where the magnitude is 1/10.
Walter Roberson
Walter Roberson on 5 Jul 2015
It looks like the magnitude of the second expression (the differential) is 0 only when L1 = 0, which zeros out all the other terms. However, when L1 = 0, the magnitude of C is 0 rather than 1/10.

Tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!