## How to rotate a line?

on 6 Feb 2012

### Kevin Moerman (view profile)

Is there a way to rotate a line of 30 degree? For example: x=1; y=[2 4 6 8 10];

Does it require a center point of rotation?(example center point is [2,6])Or does it requires the center of the line?

Thanks.

### Kevin Moerman (view profile)

on 6 Feb 2012

This should answer your question. This code does what you want and shows you what happens depending on your choice of centre point of rotation. (Look up rotation matrices and direction cosine matrices for more information). This is an example for 3D rotation for 2D in the plane you could simplify and only use the Rz part.

Kevin

```%%
```
```clear all; close all; clc;
```
```%Example coordinates
y=[2 4 6 8 10];
x=ones(size(y));
```
```%Vertices matrix
V=[x(:) y(:) zeros(size(y(:)))];
V_centre=mean(V,1); %Centre, of line
Vc=V-ones(size(V,1),1)*V_centre; %Centering coordinates
```
```a=30; %Angle in degrees
E=[0  0 a_rad]; %Euler angles for X,Y,Z-axis rotations
```
```%Direction Cosines (rotation matrix) construction
Rx=[1        0        0;...
0        cos(E(1))  -sin(E(1));...
0        sin(E(1))  cos(E(1))]; %X-Axis rotation
```
```Ry=[cos(E(2))  0        sin(E(2));...
0        1        0;...
-sin(E(2)) 0        cos(E(2))]; %Y-axis rotation
```
```Rz=[cos(E(3))  -sin(E(3)) 0;...
sin(E(3))  cos(E(3))  0;...
0        0        1]; %Z-axis rotation
```
```R=Rx*Ry*Rz; %Rotation matrix
```
```Vrc=[R*Vc']'; %Rotating centred coordinates
Vruc=[R*V']'; %Rotating un-centred coordinates
Vr=Vrc+ones(size(V,1),1)*V_centre; %Shifting back to original location
```
```figure;
plot3(V(:,1),V(:,2),V(:,3),'k.-','MarkerSize',25);  hold on; %Original
plot3(Vr(:,1),Vr(:,2),Vr(:,3),'r.-','MarkerSize',25); %Rotated around centre of line
plot3(Vruc(:,1),Vruc(:,2),Vruc(:,3),'b.-','MarkerSize',25); %Rotated around origin
axis equal; view(3); axis tight; grid on;
```

Casey

### Casey (view profile)

on 8 Feb 2012

So if I just want to implement 2D, I neglect the Rx and Ry?

### Kevin Moerman (view profile)

on 8 Feb 2012

Correct, and instead of E(3) just use a_rad straight away. Also if you find this too complex you could use POL2CART instead (make sure you understand the coordinate system transformation e.g. what is the positive direction etc):

``` x=-1:0.1:1; y=x; a=30; a_rad=((a*pi)./180);
[THETA,R] = cart2pol(x,y); %Convert to polar coordinates
[xr,yr] = pol2cart(THETA,R); %Convert back to Cartesian coordinates```
``` plot(x,y,'g-'); hold on; %Original
plot(xr,yr,'b-'); axis equal; %Rotated```

Kevin

MATLAB and Simulink resources for Arduino, LEGO, and Raspberry Pi