## Solving 6 model ode

### Aniruddh Deshmukh (view profile)

on 14 Sep 2019 at 0:09
%dG(t)/dt=Gin-f2(G(t))-f3(G(t))f4(Ii(t))+f5(x(3))
%dIp(t)/dt=f1(G(t))-E[(Ip(t)/Vp)-(Ii(t)/Vi)]-Ip(t)/tp
%dIi(t)/dt=E[(Ip(t)/Vp)-(Ii(t)/Vi)]-Ip(t)/tp
%dx1(t)/dt=3/td(Ip(t)-x1(t))
%dx2(t)/dt=3/td(x1(t)-x2(t))
%dx3(t)/dt=3/td(x2(t)-x3(t))
%mapping f2(G(t))=y1, f3(G(t))=y2, f4(Ii(t))= y3, f5(x3(t))=y4,
%f1(G(t))=y5, Ip(t)=y(6) Ii(t)=y(7)
function ode2
Vp=3;
Vi=11;
Vg=10;
E=0.2;
tp=6;
ti=100;
td=36;
Rm=210;
a1=300;
C1=2000;
Ub=72;
C2=144;
C3=1000;
U0=40;
Um=940;
bo=1.77;
C4=80;
Rg=180;
Al=0.29;
C5=26;
f1(G)=Rm/[1+exp(C1-G/Vg)/a1];
f2(G)=Ub(1-exp(-G/(C2*Vg)));
f3(G)=G/C3*Vg;
f4(Ii(t))=U0+[(Um-U0)/{1+exp(-b0ln(Ii(t)/C4(1/Vi + 1/Eti)))}];
f5(x3(t))=Rg/1+exp(Al(x3/Vp - C5));
SIR= @(t,y)[Gin-y(1)-y(2)*y(3)+ y(4); y(5)-[y(6)/Vp -y(7)/Vi]- y(6)/tp; E*[y(6)/Vp - y(7))/Vi]-y(6)/ti;
(3/td)*(Ip(t)-x1(t));(3/td)*(x1(t)-x2(t));(3/td)*(x2(t)-x3(t))]
tspan=linspace(1,0.1,5)
[T,Y] = ode45(SIR,tspan);
figure(2)
plot(T,Y)
grid
end