MATLAB Answers

1

2直線の最短距離となる座標を算出したいです。

Asked by ryo tanaka on 7 Oct 2019
Latest activity Commented on by ryo tanaka on 17 Oct 2019
2直線の最短距離座標を図を参考に算出しました。
係数s、tはsymsを用いて定義しました。
しかし、データ数が627912個もあります。
matlabを走らせると計算時間が12時間ほどかかりました。
もっと簡単な算出方法、短時間で計算ができるようなスクリプトを作りたいのですが、中々上手くいきません。
良い方法があれば教えてほしいです。
無題.jpg

  0 Comments

Sign in to comment.

4 Answers

Kazuya
Answer by Kazuya
on 8 Oct 2019

627912点のデータか何のデータか分かりませんが、2直線の式をまず求めて
で距離を計算するのが計算負荷が小さそうですがどうでしょ。

  6 Comments

Yoshio
on 8 Oct 2019
AとOが入れ替わっていて、O = [25, 0, 0]が正しいですか?
Kazuya
on 8 Oct 2019
画像も見えて状況がつかめてきました。Yoshio さんのいう通り matlabFunction を使う方法がよいのかも?
係数s、t を syms で定義して処理したコードも見せて頂くことは可能ですか?考えるベースにできればと思いまして。例えば上で頂いたデータに対して適用した形とか。。
ryo tanaka on 10 Oct 2019
回答ありがとうございます。
返信が遅くなり、大変申し訳ありませんでした。
係数s、t を syms で定義して処理したコードは添付画像通りに算出していますので、、
コードを添付した方がよろしいでしょうか?

Sign in to comment.


Yoshio
Answer by Yoshio
on 8 Oct 2019

もし、最短距離だけを求めるのであれば、
から、,, とすればベクトル化した計算式ができそうです。

  6 Comments

ryo tanaka on 10 Oct 2019
回答していただきありがとうございます。
返信が遅くなり大変申し訳ありませんでした。
AとOが入れ替わっていました。すみません。
O = [25, 0, 0]が正しいです。
処理時間0.1秒というのは自分の理想をはるかに超えるはやさですね。
一度このコードを用いて計算させてみたいと思います。
最終的には最短距離と2直線の最短距離となる座標も求めたいと思っています。。
Yoshio
on 10 Oct 2019
確認ありがとうございます。O = [25, 0, 0]で良かったです。
何回か投稿を編集されているようで、私が見たときは最短距離だけ出ればよいかと思ったのですが、座標も必要なのですね。
その場合、t,s を求める計算をv1, v2, P12等で記述できれば高速化可能と思います。
ryo tanaka on 10 Oct 2019
何度か投稿の編集を行っていましたので、伝えきれていなかったと思います。
失礼いたしました。
なるほど、t、sの記述方法を変えることで計算時間の短縮ができそうですね。

Sign in to comment.


Yoshio
Answer by Yoshio
on 8 Oct 2019

添付の図が見えませんので、良く分からない所がありますが、シンボリックが解をmatlabFunctionに変換できるので、一度数式で得られた解を数値計算向けの関数にして利用するのはどうでしょうか? 一度試してみてください。

  1 Comment

ryo tanaka on 8 Oct 2019
回答ありがとうございます。添付した図が見れず申し訳ありません。修正しました。
matlabFunctionは知りませんでした。一度試してみようと思います。ありがとうございます。

Sign in to comment.


Yoshio
Answer by Yoshio
on 10 Oct 2019
Edited by Yoshio
on 10 Oct 2019

直線モデルを以下のように置く
とすると、最短距離の条件から
よって
これをについて解くと
ここで
上記に基づき、ベクトル化を考慮してプログラムすると
% B,O,C,A = [x座標,y座標,z座標]
B=[39.8125,-0.9625,-198;39.9875,-1.8375,-198;39.9875,-0.9625,-198;39.9875,-0.7875,-198;40.1625,-7.2625,-198];
A=[-41.2125,-0.4375,-198;-41.2125,-0.2625,-198;-41.0375,-6.2125,-198;-41.0375,-0.9625,-198;-41.0375,-0.7875,-198];
C=[25,0,0];
O=[-25,0,0];
A = A';
B = B';
C = C';
O = O';
% A = rand(3,972);
% B = rand(3,646);
AA = repmat(A,1,size(B,2));
BB = reshape(repmat(B,size(A,2),1),3,size(B,2)*size(A,2));
v1 = AA-O;
v2 = BB-C;
P12 = O-C;
v1xv2 = cross(v1,v2);
d = abs(P12'*v1xv2./vecnorm(v1xv2));
tic
x1 = O;
x2 = C;
x12 = x1-x2;
v1v1 = sum(v1.*v1);
v1v2 = sum(v1.*v2);
v2v2 = sum(v2.*v2);
D = -v1v1.*v2v2 + v1v2.^2;
b = -[sum(v1.*x12);sum(v2.*x12)];
t1 = (-v2v2.*b(1,:)+v1v2.*b(2,:))./D;
t2 = (-v1v2.*b(1,:)+v1v1.*b(2,:))./D;
P1 = x1+t1.*v1;
P2 = x2+t2.*v2;
d0 = vecnorm(P1-P2);
toc
max(abs(d0-d))
min(abs(D))
972×646=627912の組だと約0.2秒でした
dとd0の差はepsの10倍程なので、合っているかと思います。なお、2つの直線が全く平行の場合は、D=0となり、解は不定となるので、この場合は別途考慮する必要がありますね。

  8 Comments

ryo tanaka on 16 Oct 2019
ご丁寧に分かりやすい説明をして頂いて感謝いたします。
ようやく理解できました。ありがとうございます。
計算で求めたdは、
[1点目のAO直線に対するBC直線1~end、2点目のAO直線に対するBC直線1~end、・・・、end点目のAO直線に対するBC直線1~end]
という順番でならんでいるということであっていますでしょうか?
質問が多くて申し訳ありません、、、
Yoshio
on 16 Oct 2019
[1点目のAO直線に対するBC直線1~end、2点目のAO直線に対するBC直線1~end、・・・、end点目のAO直線に対するBC直線1~end]
という順番でならんでいる
という記述の意味がよくわからないのですが、MATLABの良さは、アイディアを簡単に試せる点にありますので、サンプルデータを作って、確認していただくのが良いかと思います。
ryo tanaka on 17 Oct 2019
質問の仕方が悪かったです。すみません。
簡単なサンプルデータで確認してみます。

Sign in to comment.