# I have: Error using bsxfun Non-singleton dimensions of the two input arrays must match each other.

8 views (last 30 days)
Matthew Hunt on 17 Oct 2019
Edited: Sulaymon Eshkabilov on 17 Oct 2019
So I have some code which I want to get working and I don't understand the error which is being given to me which is: Error using bsxfun
Non-singleton dimensions of the two input arrays must match each other.
My code is:
function A=test_anode(t,D,c_0,Gamma,I_app)
%Compute the mu_n
N=20;
mu_n=zeros(N,1); %array which stores the solutions
old=0;error=10^-8;
for i=1:N
err=10;
while err>error %This solves the iteration x_n+1=atan(x_n)+n*pi
y_n=atan(old)+i*pi;
err=abs(tan(y_n)-y_n);
old=y_n;
end
mu_n(i)=y_n;
end
%Define the functions
a_1=@(s,mu) c_0*(1+mu.^-2).*sin(mu).*exp(-D*mu.^2.*s).*(-cos(mu)*mu.^-1+sin(mu).*mu^-2);
a_2=@(s,mu) -2*Gamma*I_app*(1+mu.^-2).*(sin(mu)).^2.*(1-exp(-D*mu.^2.*s));
%Then populate the matrices
A=bsxfun(a_1,t,mu_n)+bsxfun(a_2,t,mu_n);
The vector t can be anything, not necessarily the same length as mu_n. Is that what is cauing the issue?

Sulaymon Eshkabilov on 17 Oct 2019
Hi,
Here is the corrected ver. of your code:
function A=test_anode(t,D,c_0,Gamma,I_app)
%Compute the mu_n
N=20;
mu_n=zeros(N,1); %array which stores the solutions
old=0;error=10^-8;
for i=1:N
err=10;
while err>error %This solves the iteration x_n+1=atan(x_n)+n*pi
y_n=atan(old)+i*pi;
err=abs(tan(y_n)-y_n);
old=y_n;
end
mu_n(i)=y_n;
end
%Define the functions
a_1=@(s,mu) c_0*(1+mu.^-2).*sin(mu).*exp(-D*mu.^2.*s).*(-cos(mu).*mu.^-1+sin(mu).*mu.^-2);
a_2=@(s,mu) -2*Gamma*I_app*(1+mu.^-2).*(sin(mu)).^2.*(1-exp(-D*mu.^2.*s));
%Then populate the matrices
A=bsxfun(a_1,t,mu_n)+bsxfun(a_2,t,mu_n);
end
Good luck.

Matthew Hunt on 17 Oct 2019
Thank you for correcting my code but what exactly was wrong with it in the first place?
Matthew Hunt on 17 Oct 2019
Just tested the new version, exactly the same error.

Sulaymon Eshkabilov on 17 Oct 2019
Edited: Sulaymon Eshkabilov on 17 Oct 2019
Ok

#### 1 Comment

Matthew Hunt on 17 Oct 2019
The error was the same.