Info

# How can I calculate the area between this two curves from McCabe-Thiele c

2 views (last 30 days)
Katya Claros on 27 Mar 2020
Closed: MATLAB Answer Bot on 20 Aug 2021
this is the code. but I want to be able to find the area between the orange curve and the yellow curve
close all; clc;
%Plot equlibrium line
x_TXY = [0 0.012 0.02 0.026 0.033 0.036 0.053 0.074 0.087 0.108 0.129 0.164 0.191 0.268 0.294 0.352 0.402 0.454 0.502 0.563 0.624 0.717 0.79 0.843 0.857 0.938 1];
y_TXY = [0 0.068 0.121 0.159 0.188 0.215 0.275 0.356 0.395 0.44 0.488 0.537 0.572 0.648 0.666 0.704 0.734 0.76 0.785 0.812 0.835 0.877 0.91 0.93 0.939 0.971 1];
p1=398.76;
p2=-1958.7;
p3=4051.3;
p4=-4535.2;
p5=2893.3;
p6=-948.69;
p7=38.738;
p8=90.336;
p9=-35.774; p10=6.9969; p11=-0.003658;
x=x_TXY;
eq_fit=p1.*x.^10+p2.*x.^9.+p3.*x.^8+p4.*x.^7+p5.*x.^6.+p6.*x.^5+p7.*x.^4+p8.*x.^3+p9.*x.^2+p10.*x+p11;
plot (x_TXY, y_TXY)
hold on
plot (x_TXY, eq_fit)
%Plot 45 deg line
x_45 = (0:0.1:1);
y_45 = (0:0.1:1);
plot (x_45,y_45)
%Select x_D value
x_D=[0.75];
%Draw Op-line from x_D
L=4; D=2; R=L/D;
m=R/(R+1); y_int=x_D/(R+1);
y_op=m*x_D+y_int;
plot([0,x_D], [y_int, y_op])
%Draw 3 steps from x_D to find x_W
%Vertical line 1
x_1= 0.434;
x_2= x_D;
y_1= x_D;
y_2 = y_1;
plot([x_1, x_2], [y_1, y_2])
%Horizantal line 1
xline(x_1)
% %Vertical line 2
x_3=0.1657999975;
x_4=0.434;
y_3=0.53933333;
y_4=0.53933333;
plot([x_3, x_4], [y_3, y_4])
%Horizantal line 2
xline(x_1)
% %Vertical line 3
x_5=0.0755110065;
x_6=0.1657999975;
y_5=0.360533302;
y_6=0.360533302;
plot([x_5, x_6], [y_5, y_6])
%Horizantal line 3
xline(x_5) 