Clear Filters
Clear Filters

Symbolic Derivative in matlab

2 views (last 30 days)
HN
HN on 17 Aug 2020
Edited: HN on 18 Aug 2020
Can matlab diffrentiate F with respect to θ , ϕ and ψ only ?.
Any help is apperciated

Accepted Answer

KSSV
KSSV on 17 Aug 2020
You can carry on symbolic calculations. Read about diff.
  7 Comments
KSSV
KSSV on 18 Aug 2020
syms A B C t th
R = -A*(cos(t)-cos(t))+B*cos(th)*sin(t);
S = A*sin(t)*sin(t)-B*cos(t)+C*cos(t);
phi=atan(R/S)
HN
HN on 18 Aug 2020
Edited: HN on 18 Aug 2020
Why running on live script and script gives different result for the same expression?
syms syms t phi(t) theta(t) psi(t) dphi dtheta dpsi rp L alpha beta
x=rp*sin(alpha)*(cos(theta)*sin(phi) - cos(phi)*sin(psi)*sin(theta)) - rp*cos(alpha)*(cos(phi)*cos(theta) + sin(phi)*sin(psi)*sin(theta)) + (rp*cos(psi)*(sin(alpha + phi) - sin(phi)))/tan(alpha)
diff(x, t)
using matlab mlx and matlab script. Both gives different result
mlx gives
vx=rp*cos(psi(t))*cos(theta(t))*sin(phi(t))*sin(alpha) - rp*cos(phi(t))*cos(psi(t))*cos(theta(t))*cos(alpha)
while running on matlab script gives
vx=((rp*cos(psi(t))*(cos(alpha + phi(t)) - cos(phi(t)))*diff(phi(t), t))/tan(alpha) - rp*sin(alpha)*(sin(phi(t))*sin(theta(t))*diff(theta(t), t) - cos(phi(t))*cos(theta(t))*diff(phi(t), t) + cos(phi(t))*cos(psi(t))*sin(theta(t))*diff(psi(t), t) + cos(phi(t))*cos(theta(t))*sin(psi(t))*diff(theta(t), t) - sin(phi(t))*sin(psi(t))*sin(theta(t))*diff(phi(t), t)) - rp*cos(alpha)*(cos(phi(t))*sin(psi(t))*sin(theta(t))*diff(phi(t), t) - cos(phi(t))*sin(theta(t))*diff(theta(t), t) - cos(theta(t))*sin(phi(t))*diff(phi(t), t) + cos(psi(t))*sin(phi(t))*sin(theta(t))*diff(psi(t), t) + cos(theta(t))*sin(phi(t))*sin(psi(t))*diff(theta(t), t)) - (rp*sin(psi(t))*(sin(alpha + phi(t)) - sin(phi(t)))*diff(psi(t), t))/tan(alpha))

Sign in to comment.

More Answers (0)

Categories

Find more on Symbolic Math Toolbox in Help Center and File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!