A novel context sensitive multilevel thresholding for image segmentation

Swarnajyoti Patraa,*, Rahul Gautamb, Anshu Singlab

a Department of Computer Science and Engineering, Tezpur University, Tezpur 784028, India
b School of Mathematics and Computer Applications, Thapar University, Patiala 147004, India

A R T I C L E I N F O

Article history:
Received 12 July 2013
Received in revised form 8 May 2014
Accepted 11 June 2014
Available online 19 June 2014

Keywords:
Entropy
Genetic algorithm
Histogram
Image segmentation
Thresholding

A B S T R A C T

Most of the traditional histogram-based thresholding techniques are effective for bi-level thresholding and unable to consider spatial contextual information of the image for selecting optimal threshold. In this article a novel thresholding technique is presented by proposing an energy function to generate the energy curve of an image by taking into account the spatial contextual information of the image. The behavior of this energy curve is very much similar to the histogram of the image. To incorporate spatial contextual information of the image for threshold selection process, this energy curve is used as an input of our technique instead of histogram. Moreover, to mitigate multilevel thresholding problem the properties of genetic algorithm are exploited. The proposed algorithm is evaluated on the number of different types of images using a validity measure. The results of the proposed technique are compared with those obtained by using histogram of the image and also with an existing genetic algorithm based context sensitive technique. The comparisons confirmed the effectiveness of the proposed technique.

Introduction

Image segmentation plays an important role in image analysis and computer vision. It is often used to partition an image into separate regions, which ideally correspond to different real-world objects. Thresholding is one of the most important and effective method for image segmentation. Due to the advantage of smaller storage space, fast processing speed and ease in manipulation, thresholding techniques have drawn a lot of attention during the last couple of decades. Since thresholding is a well-researched field, there exist many algorithms for determining an optimal threshold of the image. A survey of thresholding methods and their applications exist in literature [1].

Thresholding techniques can be divided into bi-level and multilevel category, depending on the number of thresholds required to be detected. In bi-level thresholding, an image is segmented into two different regions depending on a threshold value selected from the histogram of the image [2–10]. The pixels with gray values greater than the threshold value are assigned into object region, and the rest are assigned into background. Multilevel thresholding segments a gray level image into several distinct regions by detecting more than one thresholds [11–13]. Otsu’s method [2] is one of the popular histogram thresholding method that chooses an optimal threshold by maximizing the between class variance. The minimum error thresholding methods [3,4] defined a criterion based on the assumption that the object and background pixels are normally distributed and the optimum threshold is achieved by optimizing a criterion function related to the Bayes risk. In Pun’s method [5], as modified by Kapur et al. [6], the threshold is determined by maximizing the entropy of the object and background pixels. Kwon’s [7] proposed a threshold selection method based on the cluster analysis. In [8] a thresholding criterion is formulated by exploring the knowledge about intensity contrast. Huang and Wang [9] introduced fuzzy entropy measure to select optimum threshold from the histogram. In [10], Liu et al. proposed a thresholding technique that selects an optimal threshold based on a fuzzy entropy measure which considers both inter class distinctness and intra class variation.

Traditional thresholding techniques based on histogram of the image suffered two major limitations [2,3,6,9]: (i) Unable to consider contextual information for selecting optimum threshold. (ii) Inefficient for multilevel thresholding as computationally demanding and complicated to implement. To mitigate the first limitation, an energy function is proposed. This energy function computes the energy of an image at each gray value by taking into account the spatial contextual information of the image. The characteristics of this energy curve is similar to the histogram of an image i.e., if the energy curve of an image includes peaks, we can separate it into a

\footnotesize

* Corresponding author. Tel.: +91 9434996199.
E-mail address: swpatra@gmail.com (S. Patra).

http://dx.doi.org/10.1016/j.asoc.2014.06.016
1568–4946/© 2014 Elsevier B.V. All rights reserved.
number of modes. Each mode is expected to correspond to a region, and there exists a threshold at the valley between any two adjacent modes [14]. Thus, with the help of proposed energy curve instead of histogram of the image, we incorporated spatial contextual information in the threshold selection process. To mitigate the second limitation, we exploited the properties of genetic algorithm (GA) [15–17]. The fitness function of the genetic algorithm is modeled by extending the criterion proposed in [6]. In order to show the validity of the proposed approach four different images are used and results are compared with those obtained by using histogram of the image and also with an existing GA-based context sensitive technique [16].

The rest of this paper is organized as follows. The proposed technique is presented in Section “Proposed method”. Section “Experimental results” provides the detailed description of the experimental settings and the results obtained on the considered images. Finally, Section “Discussion and conclusion” draws the conclusion of this work.

Proposed method

Histogram-based thresholding techniques are unable to consider the spatial contextual information of the image to find out appropriate thresholds [1]. In this work we proposed an energy curve similar to the histogram of an image by taking into account the spatial contextual information of the image. The energy curve obtained is used further for selecting the optimal threshold of the image.

Energy curve

Let \(I = \{i_l, 1 \leq i \leq m, 1 \leq j \leq n\} \) be an image of size \(m \times n \) where \(i_l \) is the gray value of image \(I \) at pixel \((i, j) \). Let \(I \) be the maximum gray value of the image \(I \). The spatial correlation between neighboring pixels of the image \(I \) is modeled by defining the neighborhood system \(N \) of order \(d \), for given spatial position \((i, j) \) as \(N_d = \{(i+u, j+v), (u, v) \in N_d\} \). According to the value of \(d \), the neighborhood system assume different configurations [18]. In this work, only the second-order neighborhood systems is considered, i.e., \((u, v) \in \{(±1, 0), (0, ±1), (±1, ±1)\}\). Fig. 1 depicts second-order \(N_d \) neighbor pixels of the pixel at spatial position\((i, j)\).

To compute the energy of the image \(I \) at gray value \(l \), first we generated a two-dimensional binary matrix \(B_l = \{b_{ij}, 1 \leq i \leq m, 1 \leq j \leq n\} \) such that \(b_{ij} = 1 \) if \(i_l > l \); else \(b_{ij} = -1 \). Thus, the value of each element \(b_{ij} \) in \(B_l \) is assigned either 1 or −1 depending on the gray value \(i_l \) of the corresponding pixel and the value of \(I \). Let \(C = \{c_{ij}, 1 \leq i \leq m, 1 \leq j \leq n\} \) be another matrix such that \(c_{ij} = 1, \forall (i, j) \). Then energy value \(E_l \) of the image \(I \) at gray value \(l \) is defined as:

\[
E_l = -\sum_{i=1}^{m} \sum_{j=1}^{n} b_{ij} - b_{pq} + \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij}c_{pq}
\]

(1)

The second term of the expression written on the right side of (1) is a constant term and ensures the energy value \(E_l \geq 0 \). From (1), one can see that for an image \(I \), the energy value at gray level \(l \) will be zero when all the elements of the generated matrix \(B_l \) are either 1 or −1 i.e., all the pixels of the image \(I \) has gray values either greater than \(l \) or less than \(l \). Otherwise, the energy will be positive as shown in Fig. 2(1)–(1). The proposed approach computes the energy associated with each gray value of the image to generate the energy curve by taking into account the spatial contextual information of the image.

Characteristics of the energy curve

The energy curve obtained in (1) has some interesting characteristics. Let the gray values of the pixels in the range \([r_1, r_2] \) represent an object in the image. For \(I = r_1 \), the elements in matrix \(B_l \) corresponding to the pixels in the object will be 1. If we increase the value of \(l \), few elements in \(B_l \) matrix will change from 1 to −1, as a result energy will increase. The energy increases up to certain value of \(l \) and then decreases as the neighbor entries in \(B_l \) also change from 1 to −1. For \(I = r_2 \), all the entries in \(B_l \) correspond to the pixels in the object will be −1. Thus, a bell shape energy curve will be generated in the range \([r_1, r_2] \).

Fig. 2 shows the different images, their corresponding histograms and energy curves. From this figure one can see that like histogram, the energy curve also contain valleys and peaks to represent different objects of the image. Each mode of the energy curve correspond to a region of the image that represent similar objects. There exists a valley between any two adjacent modes. Thus, our proposed energy curve behaves like a histogram of an image where we need to find out thresholds passing through the valley regions of the energy curve for segmenting the image. Since the energy curve is generated taking into an account spatial contextual information of the image, it is more smooth and clearly discriminate different objects in the image as compared to the histogram. Thus, becomes more effective to detect appropriate thresholds.

Multiple thresholds selection using genetic algorithm

Once energy curve of an image is obtained, any existing histogram-based thresholding technique [2–6,10] can be applied for detecting optimal threshold. Most of the existing histogram-based thresholding techniques are effective for detecting single threshold. For multilevel thresholding, their computational complexity increases exponentially and also complicated to implement. To overcome this problem, in this work we exploited GA. The basic steps of GA, also followed in the thresholds selection, are now described in detail.

Chromosome representation: Each chromosome is a sequence of binary numbers representing the \(k \) thresholds. If \(s \) bits are used to represent a threshold value then the length of a chromosome is \(k \times s \) bits, with the first \(s \) bits (or, genes) are used to represent the first threshold, the next \(s \) bits represent the second threshold, and so on.

Population initialization: Population is a collection of chromosomes. The total number of chromosomes belong to a population is called the size of the population. The threshold values in each chromosome are initialized randomly.
Fitness computation: Fitness function is the most important component of GA. To compute fitness value of each chromosome in the population, we exploited the entropy based threshold selection criterion presented in [6] that already shows its robustness in many applications [19,20]. This entropy based criterion is briefly described as follows.

Let ω_1 and ω_2 be two classes represent back ground and object of an image and H be the histogram of the image represent the histogram of the image.

Fitness Function

The fitness function $F(x)$ for a chromosome x is calculated as:

$$F(x) = -\sum_{i=1}^{N} p_i \log p_i$$

where p_i is the probability of an event corresponding to the i-th bin of the histogram H and N is the number of bins.

Entropy Based Threshold Selection Criterion

Let H be the histogram of the image and ω_1 and ω_2 be two classes. The entropy based threshold selection criterion is given by:

$$T = \arg \max \{ -\sum_{i=1}^{N} p_i \log p_i \}$$

where T is the threshold value.

Example Images

- **Fig. 2.** Original images: (a) fingerprint, (b) cameraman, (c) man and (d) Lena. Histogram of the images: (e) fingerprint, (f) cameraman, (g) man and (h) Lena. Energy curve of the images: (i) fingerprint, (j) cameraman, (k) man and (l) Lena.
probability of occurrence of gray level \(l \) as \(p_l \). Assuming a threshold \(t \), the entropies of classes \(\omega_1 \) and \(\omega_2 \) (donated as \(EN_{\omega_1} \) and \(EN_{\omega_2} \) respectively) are computed as follows:

\[
EN_{\omega_1} = - \sum_{l=0}^{t} \frac{p_l}{P_{\omega_1}} \log_2 \left(\frac{p_l}{P_{\omega_1}} \right)
\]

\[
EN_{\omega_2} = - \sum_{l=t+1}^{L} \frac{p_l}{P_{\omega_2}} \log_2 \left(\frac{p_l}{P_{\omega_2}} \right)
\]

(2)

where \(P_{\omega_1} = \sum_{l=0}^{t} p_l \) and \(P_{\omega_2} = 1 - P_{\omega_1} \). To select a threshold on the histogram that properly discriminate the back ground and object pixels in an image (i.e., passes through the valley region of the histogram), the entropies of classes \(\omega_1 \) and \(\omega_2 \) are computed by assuming all possible values of the threshold \(t \). Then, the optimal threshold is selected by maximizing the total entropy \(EN_{\omega_1} + EN_{\omega_2} \). If the image contains multiple objects with different gray values then we need to find out multiple thresholds to separate one object from other. Here we extended this criterion for multilevel thresholding as follows.

Let \(\omega_1, \omega_2, \ldots, \omega_k \) be the \(k \) objects of an image separated from each other by defining thresholds \(t_1, t_2, \ldots, t_{k-1} \), where \(t_1 < t_2 < t_3, \ldots, < t_{k-1} \). The entropy of \(j^{th} \) object is computed as:

\[
EN_{\omega_j} = \begin{cases}
- \sum_{l=0}^{t_1} \frac{p_l}{P_{\omega_j}} \log_2 \left(\frac{p_l}{P_{\omega_j}} \right), & \text{if } j = 1 \\
- \sum_{l=t_j}^{t_{j+1}} \frac{p_l}{P_{\omega_j}} \log_2 \left(\frac{p_l}{P_{\omega_j}} \right), & \text{if } 1 < j < k \\
- \sum_{l=t_{j+1}}^{L} \frac{p_l}{P_{\omega_j}} \log_2 \left(\frac{p_l}{P_{\omega_j}} \right), & \text{if } j = k
\end{cases}
\]

Then the total entropy will be:

\[
EN = \sum_{j=1}^{k} EN_{\omega_j}
\]

(3)

In the proposed method we used energy function defined in (1) in place of histogram to compute the probability \(p_l \) at \(l \). Then the thresholds represented by a chromosome are used to compute its fitness value using (3).

Selection: The selection process select chromosomes from the mating pool directed by the survival of the fittest concept of natural genetic systems. The selection strategy 'stochastic uniform' has been adopted here.

Crossover: Crossover exchanges information between two parent chromosomes for generating two child chromosomes. The chromosomes of length \(k \times s \), the crossover points are randomly generated in the range \([1, k \times s - 1]\).

Mutation: Each chromosome undergoes mutation with a fixed probability. Chromosomes in the population, a bit position (or gene) is mutated by simply flipping its value.

Termination criterion: The processes of fitness value computation, selection, crossover, and mutation are executed for a maximum number of iterations.

After termination criterion is satisfied, the chromosome in the population that has maximum fitness value is considered for selecting the optimal thresholds. Then depending on these threshold values the image is segmented for discriminating the different homogeneous regions of the image.

Experimental results

Experimental study presented here provides an evidence of the effectiveness of the proposed technique. Below we reported a details description of the experimental setup and then analyzed the results.

Description of the experiments

In order to assess the effectiveness of the proposed method, the results of this method are compared with those obtained by using histogram of the image (we may refer this as histogram-based technique) and also an existing GA-based context sensitive (GACS) technique [16]. The GA-based technique presented in [16] is a clustering technique. To adopt this technique for solving image segmentation problem, first the input patterns are generated corresponding to each pixel of the image. The generated input patterns included neighboring pixels information in order to take contextual information of the image. In this experiment 1st order neighborhood is considered. The input vectors contain two components, the gray value of the pixel and the average gray value of its four neighboring pixels. After generating the input patterns, the GACS technique presented in [16] is used to find out the cluster representatives for segmenting the image.

For all the considered images, the population size of GA is taken as twenty and stochastic selection strategy is used to select fittest chromosomes from the mating pool. The crossover and mutation probability is set as 0.8 and 0.01, respectively, and number of iterations set as terminating criterion of GA is taken as 1000. All these parameters of GA are set manually by varying their values in a wide range, where results are not changed significantly.

In order to evaluate the segmented results obtained by different approaches, a validity measure called Davies Bouldin (DB) index is used. It is a function of the ratio of the sum of within-object scatter to between-object separation. Let \(\omega_1, \omega_2, \ldots, \omega_k \) be the \(k \) objects defined by thresholds \(t_1 < t_2 < t_3, \ldots, < t_{k-1} \). Then the DB index is defined as:

\[
R_{ij} = \frac{\sigma_i^2 + \sigma_j^2}{d_{ij}^2}
\]

\[
R_i = \max_{j=1, ..., k, i \neq j} R_{ij}
\]

\[
DB = \frac{1}{k} \sum_{i=1}^{k} R_i
\]

(4)

where \(\sigma_i^2 \) and \(\sigma_j^2 \) are variances of object \(\omega_i \) and \(\omega_j \), respectively, and \(d_{ij}^2 \) is the distance of object centers \(\omega_i \) and \(\omega_j \). Because a low scatter/variance and a high distance between objects lead to small values of \(R_{ij} \), as a result small value of DB correspond to objects that are compact and have centers far away from each other. So the smaller the DB value, the better the segmentation is. All the algorithms presented in this paper have been implemented in Matlab (R2012b).

Analysis of results

In the present experiment four different images: the fingerprint, the cameraman, the man and the Lena are used for the experimental validation. Fig. 2 shows the original images, corresponding histograms and energy curves. From these figures one can see that the behavior of the energy curve is similar to the histogram of the image (explained in Section “Characteristics of the energy curve”). Moreover, the generated energy curve is much smoother than the histogram of an image. This may help us to select better thresholds by considering energy curve of the image instead of histogram.
Table 1
Quantitative results obtained by using proposed energy-based, histogram-based and GACS techniques. Smaller DB values indicate better performance.

<table>
<thead>
<tr>
<th>Image</th>
<th>Energy</th>
<th>DB</th>
<th>Histogram</th>
<th>DB</th>
<th>Cluster representatives</th>
<th>DB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fingerprint</td>
<td>124</td>
<td>.029</td>
<td>154</td>
<td>.057</td>
<td>([64.1, 93.3], [186.8, 168.2])</td>
<td>.062</td>
</tr>
<tr>
<td></td>
<td>97, 151</td>
<td>.164</td>
<td>87, 168</td>
<td>.266</td>
<td>([62.0, 90.9], [157.5, 158.2], [191.8, 169.8])</td>
<td>.606</td>
</tr>
<tr>
<td></td>
<td>83, 122, 162</td>
<td>.111</td>
<td>107, 141, 178</td>
<td>.154</td>
<td>([60.4, 90.1], [94.6, 139.7], [180.5, 158.9], [194.1, 192.8])</td>
<td>.357</td>
</tr>
<tr>
<td>Cameraman</td>
<td>125</td>
<td>.040</td>
<td>167</td>
<td>.154</td>
<td>([21.2, 24.7], [196.2, 193.9])</td>
<td>.048</td>
</tr>
<tr>
<td></td>
<td>80, 160</td>
<td>.148</td>
<td>47, 141</td>
<td>.142</td>
<td>([16.8, 21.0], [157.9, 157.6], [211.9, 208.2])</td>
<td>.227</td>
</tr>
<tr>
<td></td>
<td>62, 128, 190</td>
<td>.171</td>
<td>37, 126, 180</td>
<td>.183</td>
<td>([10.9, 10.7], [77.2, 88.2], [171.6, 161.3], [206.4, 205.0])</td>
<td>.252</td>
</tr>
<tr>
<td>Man</td>
<td>101</td>
<td>.013</td>
<td>138</td>
<td>.105</td>
<td>([21.7, 40.2], [161.9, 147.3])</td>
<td>.069</td>
</tr>
<tr>
<td></td>
<td>71, 132</td>
<td>.121</td>
<td>33, 113</td>
<td>.164</td>
<td>([19.1, 38.9], [169.2, 105.3], [161.1, 161.2])</td>
<td>.399</td>
</tr>
<tr>
<td></td>
<td>67, 124, 181</td>
<td>.159</td>
<td>38, 121, 183</td>
<td>.179</td>
<td>([14.1, 65.1], [185.1, 181.1], [140.8, 105.6], [166.8, 161.7])</td>
<td>.332</td>
</tr>
<tr>
<td>Lena</td>
<td>131</td>
<td>.239</td>
<td>123</td>
<td>.219</td>
<td>([73.8, 74.1], [155.7, 154.9])</td>
<td>.202</td>
</tr>
<tr>
<td></td>
<td>99, 164</td>
<td>.181</td>
<td>97, 164</td>
<td>.181</td>
<td>([62.9, 63.6], [130.7, 129.9], [186.4, 185.4])</td>
<td>.194</td>
</tr>
<tr>
<td></td>
<td>83, 131, 178</td>
<td>.160</td>
<td>91, 129, 178</td>
<td>.164</td>
<td>([56.7, 57.3], [98.9, 98.9], [146.2, 145.5], [203.7, 201.9])</td>
<td>.165</td>
</tr>
</tbody>
</table>

Table 1 reported the quantitative results obtained by using energy-based, histogram-based and GACS techniques. From the table one can see that except the Lena image, the DB values obtained by the proposed energy-based method are always better or similar to the DB values obtained by the histogram-based and GACS methods. Moreover by analyzing the results reported in Table 1 and the histogram of the images shown in Fig. 2(e)–(h), one can conclude that for bi-level thresholding/segmentation, except the Lena image, for all the other images the proposed energy-based method outperformed than both the existing methods. For example consider the results of the fingerprint image shown in Table 1. The threshold selected by the proposed and the histogram-based method is 124 and 154, respectively. From Fig. 2(e) one can see that 124 is a better threshold than 154 to segment the fingerprint image. This is also confirmed by obtaining smaller DB value 0.029 associated with the threshold value 124 compared to the DB value 0.057 associated with the threshold value 154. The GACS method selected two cluster representatives (64.1, 93.3) and (186.8, 168.2) for segmenting the fingerprint image and obtained 0.062 DB value which is larger than the DB value produced by the proposed technique (i.e., 0.029). Since the histogram of the Lena image is multimodal, (see Fig. 2(h)) the proposed technique failed to produce better result for bi-level thresholding. When the number of segments increased it produced better results compared to the other two existing techniques. For a visual qualitative analysis, Fig. 3 shows the bi-level segmented results obtained on the fingerprint, the cameraman, the man and

![Fig. 3. Bi-level segmented images obtained for fingerprint, cameraman, man and Lena images by applying (a)–(d) proposed energy-based, (e)–(h) histogram-based and (i)–(l) GACS methods.](image-url)
the Lena images by applying energy-based, histogram-based and GACS techniques. From these segmented images one can see that the proposed technique always produced satisfactory results.

Discussion and conclusion

Histogram-based traditional thresholding techniques are unable to consider spatial contextual information for selecting the optimum threshold and are effective only for bi-level thresholding. In this article a novel thresholding technique is presented that mitigates both these limitations. First, we proposed an energy function to compute the energy value of the image at each gray value by taking into account the spatial contextual information of the image. This energy value is computed in such a way that the characteristic of the energy curve becomes similar to the histogram of the image. Thus, by using the energy curve instead of using histogram, we incorporated spatial contextual information in threshold selection process. Second, to mitigate multilevel thresholding problem, GA is exploited. The fitness function of the GA is modeled extending the criterion proposed in [6].

To empirically assess the effectiveness of the proposed method, we compared it with two other methods exist in the literature by using four different images. In this comparison, we observed that the proposed method provided better results as compared to the other techniques. As a future development of this work, we plan to extend it for finding optimal number of thresholds automatically.

References