Test  Status  Code Input and Output 

1  Pass 
% The following properties are measured at room temperature and are tensile
% in a single direction. Some materials, such as metals are generally
% isotropic, whereas others, like composite are highly anisotropic
% (different properties in different directions). Also, property values can
% range depending on the material grade. Finally, thermal or environmental
% changes can alter these properties, sometimes drastically.

2  Fail 
S_y = 250e6; %Pa
S_u = 400e6; %Pa
e_y = 0.00125;
e_u = 0.35;
nu = 0.26;
G = 79.3e9; %Pa
E = 200e9; %Pa
density = 7.85; %g/cm^3
sh_exp = 0.14; %strainhardening exponent
sh_coeff = 0.463; %strainhardening coefficient
assert(abs(stress_strain1(S_y,e_y)E)<1e9)
S_y =
250000000
e_y =
0.0013

3  Fail 
S_y = 830e6; %Pa
S_u = 900e6; %Pa
e_y = 0.00728;
e_u = 0.14;
nu = 0.342;
G = 44e9; %Pa
E = 114e9; %Pa
density = 4.51; %g/cm^3
sh_exp = 0.04; %strainhardening exponent
sh_coeff = 0.974; %strainhardening coefficient
assert(abs(stress_strain1(S_y,e_y)E)<1e9)
S_y =
830000000
e_y =
0.0073

4  Fail 
S_y = 1172e6; %Pa
S_u = 1407e6; %Pa
e_y = 0.00563;
e_u = 0.027;
nu = 0.29;
G = 11.6e9; %Pa
E = 208e9; %Pa
density = 8.19; %g/cm^3
sh_exp = 0.075; %strainhardening exponent
sh_coeff = 1.845; %strainhardening coefficient
assert(abs(stress_strain1(S_y,e_y)E)<1e9)
S_y =
1.1720e+09
e_y =
0.0056

5  Fail 
S_y = 241e6; %Pa
S_u = 300e6; %Pa
e_y = 0.0035;
e_u = 0.15;
nu = 0.33;
G = 26e9; %Pa
E = 68.9e9; %Pa
density = 2.7; %g/cm^3
sh_exp = 0.042; %strainhardening exponent
sh_coeff = 0.325; %strainhardening coefficient
assert(abs(stress_strain1(S_y,e_y)E)<1e9)
S_y =
241000000
e_y =
0.0035

6  Fail 
S_y = 70e6; %Pa
S_u = 220e6; %Pa
e_y = 0.00054;
e_u = 0.48;
nu = 0.34;
G = 48e9; %Pa
E = 130e9; %Pa
density = 8.92; %g/cm^3
sh_exp = 0.44; %strainhardening exponent
sh_coeff = 0.304; %strainhardening coefficient 530MPa
assert(abs(stress_strain1(S_y,e_y)E)<1e9)
S_y =
70000000
e_y =
5.4000e04

7  Fail 
S_y = 317e6; %Pa
S_u = 1130e6; %Pa
e_y = 0.000685;
e_u = 0.24;
nu = 0.3;
G = 178e9; %Pa
E = 463e9; %Pa
density = 21.02; %g/cm^3
sh_exp = 0.353; %strainhardening exponent
sh_coeff = 1.870; %strainhardening coefficient
assert(abs(stress_strain1(S_y,e_y)E)<1e9)
S_y =
317000000
e_y =
6.8500e04

8  Fail 
S_y = 82e6; %Pa
S_u = 82e6; %Pa
e_y = 0.0265;
e_u = 0.45;
nu = 0.41;
G = 2.8e9; %Pa
E = 3.1e9; %Pa
density = 1.14; %g/cm^3
assert(abs(stress_strain1(S_y,e_y)E)<1e9)
S_y =
82000000
e_y =
0.0265

9  Fail 
S_y = 230e6; %Pa
S_u = 230e6; %Pa
e_y = 0.016;
e_u = 0.016;
nu = 0.35;
G = 13.0e9; %Pa
E = 14.5e9; %Pa
density = 1.51; %g/cm^3
assert(abs(stress_strain1(S_y,e_y)E)<1e9)
S_y =
230000000
e_y =
0.0160

10  Fail 
S_y = 1200e6; %Pa
S_u = 1200e6; %Pa
e_y = 0.001;
e_u = 0.001;
nu = 0.20;
G = 478e9; %Pa
E = 1200e9; %Pa
density = 3.51; %g/cm^3
assert(abs(stress_strain1(S_y,e_y)E)<1e9)
S_y =
1.2000e+09
e_y =
1.0000e03

Return the 3n+1 sequence for n
5923 Solvers
2062 Solvers
252 Solvers
130 Solvers
Matlab Basics II  Velocity of a particle
128 Solvers
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!