image thumbnail

Accurate Binomial Coefficients

version 1.0.2 (5.54 MB) by Moreno, M.
Binomial coefficients / Pascal Triangle elements for / N choose K look-up table (LUT) with no numerical errors for 0 <= N <=1029.

12 Downloads

Updated 15 Apr 2022

View License

Syntax
b = binomial(n)
b = binomial(n, k)
b = binomial(n, [])
Description
b = binomial(n) generates a table with the binomial coefficients up to order 'n', with 0 <= n <= 1029.
b = binomial(n, k) returns the 'N' over 'K' coefficients in n(:) and k(:) or in n(:, 1), n(:, 2).
b = binomial(n, []) returns the 'N' + 1 -th row of the Pascal Triangle, or the rows in n(:) + 1.
The values are pre-computed using arbitrary numerical precision and therefore are exempt of overflows. Due to the numerical precision of the 'double' class type, the values have been saved as a cell array with strings. Conversion to double can be easily achieved through the str2double command, at the cost of loss of numerical precision.
Examples
% Pascal Triangle for n <= 4
b = binomial(4);
b =
5×5 cell array
{'1'} {'0'} {'0'} {'0'} {'0'}
{'1'} {'1'} {'0'} {'0'} {'0'}
{'1'} {'2'} {'1'} {'0'} {'0'}
{'1'} {'3'} {'3'} {'1'} {'0'}
{'1'} {'4'} {'6'} {'4'} {'1'}
% Binomial expansion terms for n = 4
b = binomial(4, []);
b =
1×5 cell array
{'1'} {'4'} {'6'} {'4'} {'1'}
% Accurate N choose K (1000, 500)
b = round(vpa(binomial(1000, 500)));
b =
270288240945436569515614693625980000000000000092092817939260465262396897314854756510301009414481288655741593673629116029259908377031297694048974886875144010566190142039764976194007777780262204642682840529729586602474213985385651649048525534270439972471247027710107116837053571858737469793700061118464
% Table of binomial coefficients
x = [3:3:12; 0,3,6,8];
b = binomial(x); % Equal to: binomial(x'), or binomial(x(:, 1), x(:, 2))
b =
4×1 cell array
{'1' }
{'20' }
{'84' }
{'495'}
% Some binomial elements for a given 'n'
b = binomial(10, 0 : 2 : 10);
b =
1×6 cell array
{'1'} {'45'} {'210'} {'210'} {'45'} {'1'}
% Overflow and loss of numerical precision in 'double' types
b = binomial(60, 30);
err = str2double(b) - nchoosek(60, 30);
b = binomial(65, 35);
res = sym(b) - str2double(b);
err =
16
res =
-32

Cite As

Moreno, M. (2022). Accurate Binomial Coefficients (https://www.mathworks.com/matlabcentral/fileexchange/109945-accurate-binomial-coefficients), MATLAB Central File Exchange. Retrieved .

MATLAB Release Compatibility
Created with R2022a
Compatible with any release
Platform Compatibility
Windows macOS Linux
Tags Add Tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!