Receiver Operating Characteristic curve with convex hull, plus areas under ROC and ROCCH.


Updated 11 Dec 2009

View License

ROC curves illustrate performance on a binary classification problem where classification is based on simply thresholding a set of scores at varying levels. Lenient thresholds give high sensitivity but low specificity, strict thresholds give high specificity but low sensitivity; the ROC curve plots this trade-off over a range of thresholds (usually with sens vs 1-spec, but I prefer sens vs spec; this code gives you the option).

It is theoretically possible to operate anywhere on the convex hull of an ROC curve, so this is plotted too. The area under the curve (AUC) for a ROC plot is a measure of overall accuracy, and the area under the ROCCH is a kind of upper bound on what might be achievable with a weighted combination of differently thresholded results from the given classifier.

Cite As

Ged Ridgway (2023). (AU)ROC(CH) (https://www.mathworks.com/matlabcentral/fileexchange/22641-au-roc-ch), MATLAB Central File Exchange. Retrieved .

MATLAB Release Compatibility
Created with R14SP3
Compatible with any release
Platform Compatibility
Windows macOS Linux

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Version Published Release Notes

Fixed a minor bug that produced incorrect AUROCCH values for very bad classifiers (that lie partially under the line of pure chance).