1D Non-derivative Peak Finder
PEAKFIND general 1D peak finding algorithm
Tristan Ursell, 2013.
peakfind(x_data,y_data)
peakfind(x_data,y_data,upsam)
peakfind(x_data,y_data,upsam,gsize,gstd)
peakfind(x_data,y_data,upsam,htcut,'cuttype')
peakfind(x_data,y_data,upsam,gsize,gstd,htcut,'cuttype')
[xpeaks]=peakfind()
[xout,yout,peakspos]=peakfind()
This function finds peaks without taking first or second derivatives, rather it uses local slope features in a given data set. The function has four basic modes.
Mode 1: peakfind(x_data,y_data) simply finds all peaks in the data
given by 'xdata' and 'ydata'.
Mode 2: peakfind(x_data,y_data,upsam) finds peaks after up-sampling
the data by the integer factor 'upsam' -- this allows for higher
resolution peak finding. The interpolation uses a cubic spline that
does not introduce fictitious peaks.
Mode 3: peakfind(x_data,y_data,upsam,gsize,gstd) up-samples and then
convolves the data with a Gaussian point spread vector of length
gsize (>=3) and standard deviation gstd (>0).
Mode 4: peakfind(x_data,y_data,upsam,htcut,'cuttype') up-samples the
data (upsam=1 analyzes the data unmodified). The string 'cuttype' can
either be 'abs' (absolute) or 'rel' (relative), which specifies a peak
height cutoff which is either:
'abs' - finds peaks that lie an absolute amount 'htcut' above the
lowest value in the data set.
for (htcut > 0) peaks are found if
peakheights > min(yout) + htcut
'rel' - finds peaks that are an amount 'htcut' above the lowest
value in the data set, relative to the full change in y-input
values.
for (0 < htcut < 1) peaks are found if
(peakheights-min(yout))/(max(yout)-min(yout)) > htcut
Upsampling and convolution allows one to find significant peaks in noisy data with sub-pixel resolution. The algorithm also finds peaks in data where the peak is surrounded by zero first derivatives, i.e. the peak is actually a large plateau.
The function outputs the x-position of the peaks in 'xpeaks' or the processed input data in 'xout' and 'yout' with 'peakspos' as the indices of the peaks, i.e. xpeaks = xout(peakspos).
If you want the algorithm to find the position of minima, simply input '-y_data'. Peaks within half the convolution box size of the boundary will be ignored (to avoid this, pad the data before processing).
Example 1:
x_data = -50:50;
y_data =(sin(x_data)+0.000001)./(x_data+0.000001)+1+0.025*(2*rand(1,length(x_data))-1);
[xout,yout,peakspos]=peakfind(x_data,y_data);
plot(x_data,y_data,'r','linewidth',2)
hold on
plot(xout,yout,'b','linewidth',2)
plot(xout(peakspos),yout(peakspos),'g.','Markersize',30)
xlabel('x')
ylabel('y')
title(['Found ' num2str(length(peakspos)) ' peaks.'])
box on
Example 2:
x_data = -50:50;
y_data =(sin(x_data)+0.000001)./(x_data+0.000001)+1+0.025*(2*rand(1,length(x_data))-1);
[xout,yout,peakspos]=peakfind(x_data,y_data,4,6,2,0.2,'rel');
plot(x_data,y_data,'r','linewidth',2)
hold on
plot(xout,yout,'b','linewidth',2)
plot(xout(peakspos),yout(peakspos),'g.','Markersize',30)
xlabel('x')
ylabel('y')
title(['Found ' num2str(length(peakspos)) ' peaks.'])
box on
Cite As
Tristan Ursell (2025). 1D Non-derivative Peak Finder (https://www.mathworks.com/matlabcentral/fileexchange/30490-1d-non-derivative-peak-finder), MATLAB Central File Exchange. Retrieved .
MATLAB Release Compatibility
Platform Compatibility
Windows macOS LinuxCategories
- Signal Processing > Signal Processing Toolbox > Digital and Analog Filters > Multirate Signal Processing >
- Signal Processing > Signal Processing Toolbox > Measurements and Feature Extraction > Descriptive Statistics >
Tags
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Discover Live Editor
Create scripts with code, output, and formatted text in a single executable document.