## Colebrook-White Equation

version 1.1 (1.8 KB) by
Computes the friction factor in pipes for given values of the Reynolds number (Re) and the relative roughness coefficient (epsilon).

Updated 25 Sep 2020

From GitHub

MATLAB code to compute the friction factor in pipes for given values of the Reynolds number (Re) and the relative roughness coefficient (epsilon).

Syntax:
f = colebrook(Re,epsilon)

Example 1: Single Re, single epsilon
Re = 1e5;
epsilon = 1e-4;
f = colebrook(Re,epsilon)

Example 2: Multiple Re, single epsilon
Re = 5000:1000:100000;
epsilon = 1e-4;
f = colebrook(Re,epsilon);
plot(Re,f)

Example 3: Single Re, multiple epsilon
Re = 1e5;
epsilon = linspace(1e-4,1e-1,100);
f = colebrook(Re,epsilon);
plot(epsilon,f)

Example 4: Multiple Re, multiple epsilon
Re = logspace(4,8,100);
epsilon = linspace(1e-4,1e-1,100);
[RE,EPSILON] = meshgrid(Re,epsilon);
F = colebrook(RE,EPSILON);
surf(RE,EPSILON,F)

References:
 Colebrook, C. F., & White, C. M. (1937). Experiments with fluid
friction in roughened pipes. Proceedings of the Royal Society of
London. Series A - Mathematical and Physical Sciences, 161(906),
367-381.
 Colebrook, C. (1939). Turbulent Flow in Pipes, with Particular
Reference to the Transition Region between the Smooth and Rough
Pipe Laws. Journal of the Institution of Civil Engineers, 11(4),
133-156.

### Cite As

ILDEBERTO DE LOS SANTOS RUIZ (2021). Colebrook-White Equation (https://github.com/isantosruiz/colebrook/releases/tag/1.1), GitHub. Retrieved .

Santos-Ruiz, Ildeberto. Colebrook Equation. Zenodo, 2019, doi:10.5281/zenodo.3348254.

View more styles
##### MATLAB Release Compatibility
Created with R2019a
Compatible with any release
##### Platform Compatibility
Windows macOS Linux