Given a curve in 'd' spatial coordinates, the function computes the associated 'moving trihedron' in terms of the unit tangent, -normal and -binormal at each point of the curve 'x'. The function returns the frame ['t', 'p','b'], corresponding to the tangent, normal and binormal, respectively.
To check that it works, compute e.g.
N = 100; nwinds = 2;
theta = linspace(0,nwinds*2*pi,N)';
L = theta/nwinds;
x = [cos(theta), sin(theta), L];
[t,p,b] = movingTrihedron(x);
refinement_factor = 10;
plot3(x(:,1),x(:,2),x(:,3),'k-')
hold on
quiver3(x(1:10:end,1),x(1:10:end,2),x(1:10:end,3),t(1:10:end,1),t(1:10:end,2),t(1:10:end,3))
quiver3(x(1:10:end,1),x(1:10:end,2),x(1:10:end,3),p(1:10:end,1),p(1:10:end,2),p(1:10:end,3))
quiver3(x(1:10:end,1),x(1:10:end,2),x(1:10:end,3),b(1:10:end,1),b(1:10:end,2),b(1:10:end,3))
André Flakke (2021). movingTrihedron (https://www.mathworks.com/matlabcentral/fileexchange/74457-movingtrihedron), MATLAB Central File Exchange. Retrieved .
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Create scripts with code, output, and formatted text in a single executable document.