File Exchange

image thumbnail

Ostrogradsky's Method

version 1.0.3 (2 KB) by Ryan Black
Function decomposes a proper rational fraction integrand via Ostrogradsky's method.

3 Downloads

Updated 18 Feb 2021

View Version History

View License

Syntax:

[P_1,Q_1,P_2,Q_2] = ostrogradskysmethod(P,Q,x)

Description:

For an integral with an integrand that is a proper rational fraction, Ostrogradsky's decomposes the integral as

$\int \frac{P(x)}{Q(x)} \, dx = \frac{P_1(x)}{Q_1(x)} + \int \frac{P_2(x)}{Q_2(x)} \, dx. \tag*{} $

The inputs to ostrogradskysmethod are symbolic polynomials P and Q, with P being lesser degree than Q. The outputs are symbolic polynomials P_1, Q_1, P_2, and Q_2.

Examples:

Use Ostrogradsky's method to decompose an integral with P(x) = x^3-x^2+x+1 and Q(x) = (x^2+1)^3

syms x
P = x^3-x^2+x+1;
Q = (x^2+1)^3;
[P_1,Q_1,P_2,Q_2] = ostrogradskysmethod(P,Q,x)

P_1 =
x^3/4 - x^2/2 + (3*x)/4 - 1/2
Q_1 =
(x^2 + 1)^2
P_2 =
1/4
Q_2 =
x^2 + 1

Take the integral via Ostrogradsky's method and confirm that it matches MATLAB's solution

I = P_1/Q_1+int(P_2/Q_2)
I_c = int(P/Q)

I =
atan(x)/4 + (x^3/4 - x^2/2 + (3*x)/4 - 1/2)/(x^2 + 1)^2
I_c =
atan(x)/4 + (x^3/4 - x^2/2 + (3*x)/4 - 1/2)/(x^2 + 1)^2

Cite As

Ryan Black (2021). Ostrogradsky's Method (https://www.mathworks.com/matlabcentral/fileexchange/87497-ostrogradsky-s-method), MATLAB Central File Exchange. Retrieved .

Comments and Ratings (0)

MATLAB Release Compatibility
Created with R2018b
Compatible with any release
Platform Compatibility
Windows macOS Linux

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!