DEMO_febio_0051_hip_implant_01
Below is a demonstration for:
- Building geometry for a a hip implant and bone
Contents
Keywords
- febio_spec version 2.5
- febio, FEBio
- beam force loading
- force control boundary condition
- hexahedral elements, hex8, hex20
- beam, rectangular
- static, solid
- hyperelastic, Ogden
- displacement logfile
- stress logfile
clear; close all; clc;
Plot settings
fontSize=20; faceAlpha1=0.8; markerSize=40; markerSize2=20; lineWidth=3;
Control parameters
% Path names defaultFolder = fileparts(fileparts(mfilename('fullpath'))); savePath=fullfile(defaultFolder,'data','temp'); % Defining file names febioFebFileNamePart='tempModel'; febioFebFileName=fullfile(savePath,[febioFebFileNamePart,'.feb']); %FEB file name febioLogFileName=fullfile(savePath,[febioFebFileNamePart,'.txt']); %FEBio log file name febioLogFileName_disp=[febioFebFileNamePart,'_disp_out.txt']; %Log file name for exporting displacement febioLogFileName_force=[febioFebFileNamePart,'_force_out.txt']; %Log file name for exporting force febioLogFileName_stress=[febioFebFileNamePart,'_stress_out.txt']; %Log file name for exporting stresses febioLogFileName_strainEnergy=[febioFebFileNamePart,'_energy_out.txt']; %Log file name for exporting strain energy density %Define applied force forceBody=(80*9.81)/2; displacementMagnitude=-1; %Material parameter set % Bone c1=500; %Shear-modulus-like parameter m1=2; %Material parameter setting degree of non-linearity k_factor=50; %Bulk modulus factor k1=c1*k_factor; %Bulk modulus % Cement c2=500; %Shear-modulus-like parameter m2=2; %Material parameter setting degree of non-linearity k_factor=50; %Bulk modulus factor k2=c1*k_factor; %Bulk modulus % FEA control settings numTimeSteps=10; %Number of time steps desired max_refs=25; %Max reforms max_ups=0; %Set to zero to use full-Newton iterations opt_iter=6; %Optimum number of iterations max_retries=5; %Maximum number of retires dtmin=(1/numTimeSteps)/100; %Minimum time step size dtmax=1/numTimeSteps; %Maximum time step size runMode='external'; %'external' or 'internal'
n1=[1 0 0]; n2=vecnormalize([1 1 0]); boneExtension=40; cementThickness=3; boneBaseThickness=6; boneScaleFactors=[1.1 1.1]; volumeFactor=10; hipParStruct.ballRadius=20; hipParStruct.stickRadius=7; hipParStruct.stickLength=21; hipParStruct.stickLengthStraight=hipParStruct.stickLength-6; hipParStruct.neckRadius=15; hipParStruct.neckEllipseScale=2; hipParStruct.collarThickness=3; hipParStruct.loftOffset=20; hipParStruct.loftLenght=40; hipParStruct.stemRadius=8; hipParStruct.stemLength=50; hipParStruct.stemAngle=0.25*pi; hipParStruct.pointSpacing=2;
[F_implant,V_implant,C_implant,curveSet]=parHipImplant(hipParStruct); Qz=euler2DCM([0 0 0.25*pi]); Qy=euler2DCM([0 -0.5*pi 0 ]); Qzz=euler2DCM([0 0 0.5*pi]); pointSpacing=mean(patchEdgeLengths(F_implant,V_implant)); [~,~,N_implant]=patchNormal(F_implant,V_implant); indTop=curveSet{2}; indBottom=curveSet{4};
cFigure; hold on; gpatch(F_implant,V_implant,C_implant,'k',1); % gpatch(F_bone,V_bone,boneColor,'k',1); for q=1:1:numel(curveSet) plotV(V_implant(curveSet{q},:),'r.-','MarkerSize',25,'LineWidth',3); end axisGeom; camlight headlight; colormap gjet; icolorbar; drawnow;

logicSelect=ismember(C_implant,[4 5]); F_cement=F_implant(logicSelect,:); C_cement=C_implant(logicSelect); V_cement=V_implant; [F_cement,V_cement,indFix]=patchCleanUnused(F_cement,V_cement); indTopCement=indFix(indTop); indBottomCement=indFix(indBottom); [~,~,N_cement]=patchNormal(F_cement,V_cement); Eb_cement=patchBoundary(F_cement,V_cement); indBoundaryCement=unique(Eb_cement); N_cement(indTopCement,1)=0; N_cement(indTopCement,:)=vecnormalize(N_cement(indTopCement,:)); V_cement=V_cement+cementThickness.*N_cement; F_cement=F_cement(C_cement~=6,:); [F_cement,V_cement]=patchCleanUnused(F_cement,V_cement);
numStepsExtrude=ceil(boneExtension./pointSpacing); numStepsExtrude=numStepsExtrude+double(iseven(numStepsExtrude)); clear cParExtrude; cParExtrude.depth=boneExtension; cParExtrude.patchType='tri'; cParExtrude.dir=1; cParExtrude.n=n2; cParExtrude.closeLoopOpt=1; cParExtrude.numSteps=numStepsExtrude; [F_cement_extInner,V_cement_extInner]=polyExtrude(V_implant(indBottom,:),cParExtrude); indEndCementInner=numStepsExtrude:numStepsExtrude:size(V_cement_extInner,1); [F_cement_extOuter,V_cement_extOuter]=polyExtrude(V_cement(indBottomCement,:),cParExtrude); indEndCementOuter=numStepsExtrude:numStepsExtrude:size(V_cement_extOuter,1);
pointSpacingNow=mean(sqrt(sum(diff(V_cement_extOuter(indEndCementOuter,:),1,1).^2,2))); [F_cement_bottom,V_cement_bottom]=regionTriMesh3D({V_cement_extOuter(indEndCementOuter,:),... V_cement_extInner(indEndCementInner,:)},pointSpacingNow,0,'linear'); N_cement_bottom=mean(patchNormal(F_cement_bottom,V_cement_bottom),1); if dot(N_cement_bottom,n2)<1 F_cement_bottom=fliplr(F_cement_bottom); end pointSpacingNow=mean(sqrt(sum(diff(V_implant(indTop,:),1,1).^2,2))); [F_cement_top,V_cement_top]=regionTriMesh3D({V_implant(indTop,:),... V_cement(indTopCement,:)},pointSpacingNow,0,'linear'); N_cement_top=mean(patchNormal(F_cement_top,V_cement_top),1); if dot(N_cement_top,[1 0 0])>0 F_cement_top=fliplr(F_cement_top); end
[Fc,Vc,Cc]=joinElementSets({F_cement,F_cement_top,F_cement_bottom,F_cement_extInner,F_cement_extOuter},...
{V_cement,V_cement_top,V_cement_bottom,V_cement_extInner,V_cement_extOuter});
[Fc,Vc]=mergeVertices(Fc,Vc);
cFigure; hold on; title('Cement'); gpatch(F_implant,V_implant,'w','none',0.5); gpatch(Fc,Vc,Cc,'k',0.5); colormap gjet; icolorbar; axisGeom; camlight headlight; drawnow;

N_implant(indTop,1)=0; N_implant(indTop,:)=vecnormalize(N_implant(indTop,:)); V_loft1=V_implant(indTop,:)+(boneBaseThickness+cementThickness).*N_implant(indTop,:); logicLow=V_loft1(:,2)<0; V_loft1(logicLow,2)=V_loft1(logicLow,2)*boneScaleFactors(1); V_loft1(~logicLow,2)=V_loft1(~logicLow,2)*boneScaleFactors(2); [~,indMax]=max(V_loft1(:,3)); if indMax>1 V_loft1=V_loft1([indMax:size(V_loft1,1) 1:indMax-1],:); end V_loft2=V_implant(indBottom,:)+(boneBaseThickness+cementThickness).*N_implant(indBottom,:); V_loft2=V_loft2+boneExtension*n2(ones(size(V_loft2,1),1),:); [~,indMax]=max(V_loft2(:,3)); if indMax>1 V_loft2=V_loft2([indMax:size(V_loft2,1) 1:indMax-1],:); end V_loft2=flipud(V_loft2); p1=mean(V_loft1,1); p2=mean(V_loft2,1); d=sqrt(sum((p1-p2).^2)); numStepsCurve=ceil(d/pointSpacing); numStepsCurve=numStepsCurve+double(iseven(numStepsCurve)); f=d/3; p=[p1;p1+f*n1; p2-f*n2;p2]; Vg=bezierCurve(p,numStepsCurve); [F_loft,V_loft,C_loft]=sweepLoft(V_loft1,V_loft2,n1,n2,Vg); E=F_loft(iseven(C_loft),[1 2]); VE=patchCentre(E,V_loft); V_loft(E(:,1),:)=VE; indTopBone=1:numStepsCurve:size(V_loft,1); indBottomBone=numStepsCurve:numStepsCurve:size(V_loft,1); [F_loft,V_loft,C_loft]=quad2tri(F_loft,V_loft,'a',C_loft);
pointSpacingNow=mean(sqrt(sum(diff(V_loft(indTopBone,:),1,1).^2,2))); [F_bone_top,V_bone_top]=regionTriMesh3D({V_loft(indTopBone,:),... V_cement(indTopCement,:)},pointSpacingNow,0,'linear'); N_bone_top=mean(patchNormal(F_bone_top,V_bone_top),1); if dot(N_bone_top,[1 0 0])>0 F_bone_top=fliplr(F_bone_top); end pointSpacingNow=mean(sqrt(sum(diff(V_loft(indBottomBone,:),1,1).^2,2))); [F_bone_bottom,V_bone_bottom]=regionTriMesh3D({V_loft(indBottomBone,:),... V_cement_extOuter(indEndCementOuter,:)},pointSpacingNow,0,'linear'); N_bone_bottom=mean(patchNormal(F_bone_bottom,V_bone_bottom),1); if dot(N_bone_bottom,[1 0 0])>0 F_bone_bottom=fliplr(F_bone_bottom); end
[F_bone,V_bone,C_bone]=joinElementSets({F_loft,F_bone_top,F_bone_bottom},...
{V_loft,V_bone_top,V_bone_bottom});
[F_bone,V_bone]=mergeVertices(F_bone,V_bone);
cFigure; hold on; gpatch(F_implant,V_implant,'w','none',0.5); gpatch(Fc,Vc,'bw','none',0.5); gpatch(F_bone,V_bone,C_bone,'none',0.5); axisGeom; camlight headlight; drawnow;

C_bone=C_bone+max(C_implant)+max(Cc); Cc=Cc+max(C_implant); [FT,VT,CT]=joinElementSets({F_implant,Fc,F_bone},{V_implant,Vc,V_bone},{C_implant,Cc,C_bone}); [FT,VT]=mergeVertices(FT,VT); VT=VT*Qz*Qy*Qzz;
cFigure; hold on; gpatch(FT,VT,CT,'none',0.5); axisGeom; camlight headlight; colormap gjet; icolorbar; drawnow;

logicBone=ismember(CT,[7 11 12 13 14]); V_inner_bone=getInnerPoint(FT(logicBone,:),VT); cFigure; hold on; gpatch(FT(logicBone,:),VT,'w','none',0.5); plotV(V_inner_bone,'k.','MarkerSize',25) axisGeom; camlight headlight; drawnow;

logicCement=ismember(CT,[4 5 7 8 9 10 11]); V_inner_cement=getInnerPoint(FT(logicCement,:),VT); cFigure; hold on; gpatch(FT(logicCement,:),VT,'w','none',0.5); plotV(V_inner_cement,'k.','MarkerSize',25) axisGeom; camlight headlight; drawnow;

F_solid=FT(logicCement | logicBone,:); C_solid=CT(logicCement | logicBone); [F_solid,V_solid]=patchCleanUnused(F_solid,VT); logicImplant=ismember(CT,1:6); F_implant=FT(logicImplant,:); C_implant=CT(logicImplant); [F_implant,V_implant]=patchCleanUnused(F_implant,VT);
Regional mesh volume parameter
tetVolumes(1)=tetVolMeanEst(FT(logicBone,:),VT); %Volume for regular tets tetVolumes(2)=tetVolMeanEst(FT(logicCement,:),VT); %Volume for regular tets tetGenStruct.stringOpt='-pq1.2AaY'; tetGenStruct.Faces=F_solid; tetGenStruct.Nodes=V_solid; tetGenStruct.holePoints=[]; tetGenStruct.faceBoundaryMarker=C_solid; %Face boundary markers tetGenStruct.regionPoints=[V_inner_bone;V_inner_cement]; %region points tetGenStruct.regionA=tetVolumes*volumeFactor; [meshOutput]=runTetGen(tetGenStruct); %Run tetGen % Access elements, nodes, and boundary faces E_solid=meshOutput.elements; V_solid=meshOutput.nodes; Fb_solid=meshOutput.facesBoundary; Cb_solid=meshOutput.boundaryMarker; CE_solid=meshOutput.elementMaterialID;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% --- TETGEN Tetrahedral meshing --- 05-May-2020 18:45:54 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% --- Writing SMESH file --- 05-May-2020 18:45:54 ----> Adding node field ----> Adding facet field ----> Adding holes specification ----> Adding region specification --- Done --- 05-May-2020 18:45:55 --- Running TetGen to mesh input boundary--- 05-May-2020 18:45:55 Opening /mnt/data/MATLAB/GIBBON/data/temp/temp.smesh. Delaunizing vertices... Delaunay seconds: 0.407561 Creating surface mesh ... Surface mesh seconds: 0.028586 Recovering boundaries... Boundary recovery seconds: 0.078935 Removing exterior tetrahedra ... Spreading region attributes. Exterior tets removal seconds: 0.02736 Recovering Delaunayness... Delaunay recovery seconds: 0.07501 Refining mesh... Refinement seconds: 0.28182 Optimizing mesh... Optimization seconds: 0.02356 Writing /mnt/data/MATLAB/GIBBON/data/temp/temp.1.node. Writing /mnt/data/MATLAB/GIBBON/data/temp/temp.1.ele. Writing /mnt/data/MATLAB/GIBBON/data/temp/temp.1.face. Writing /mnt/data/MATLAB/GIBBON/data/temp/temp.1.edge. Output seconds: 0.267478 Total running seconds: 1.19129 Statistics: Input points: 11944 Input facets: 23968 Input segments: 35912 Input holes: 0 Input regions: 2 Mesh points: 18063 Mesh tetrahedra: 87689 Mesh faces: 183362 Mesh faces on exterior boundary: 15968 Mesh faces on input facets: 23968 Mesh edges on input segments: 35912 Steiner points inside domain: 6119 --- Done --- 05-May-2020 18:45:56 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% --- Importing TetGen files --- 05-May-2020 18:45:56 --- Done --- 05-May-2020 18:45:56
V=[V_solid;V_implant];
F_implant=F_implant+size(V_solid,1);
numDigitsMerge=6-numOrder(mean(patchEdgeLengths(F_implant,V)));
[~,indKeep,indFix]=unique(pround(V,numDigitsMerge),'rows');
V=V(indKeep,:);
F_implant=indFix(F_implant);
E_solid=indFix(E_solid);
Fb_solid=indFix(Fb_solid);
E_cement=E_solid(CE_solid==-3,:);
E_bone=E_solid(CE_solid==-2,:);
E_solid=[E_bone;E_cement];
Visualizing solid mesh
hFig=cFigure; hold on; gpatch(F_implant,V,'w','none',0.5); optionStruct.hFig=hFig; meshView(meshOutput,optionStruct); axisGeom; drawnow;

Visualizing boundary conditions
F_bottomSupport=Fb_solid(ismember(Cb_solid,[9 14]),:); bcSupportList=unique(F_bottomSupport(:)); hFig=cFigure; hold on; gpatch(Fb_solid,V,'kw','none',0.25); hl(1)=plotV(V(bcSupportList,:),'k.','MarkerSize',25); hl(2)=gpatch(F_implant,V,'rw','r',1); legend(hl,{'BC support','BC prescribe'}); axisGeom; camlight headlight; drawnow;

Defining the FEBio input structure
See also febioStructTemplate and febioStruct2xml and the FEBio user manual.
%Get a template with default settings [febio_spec]=febioStructTemplate; %febio_spec version febio_spec.ATTR.version='2.5'; %Module section febio_spec.Module.ATTR.type='solid'; %Control section febio_spec.Control.analysis.ATTR.type='static'; febio_spec.Control.time_steps=numTimeSteps; febio_spec.Control.step_size=1/numTimeSteps; febio_spec.Control.time_stepper.dtmin=dtmin; febio_spec.Control.time_stepper.dtmax=dtmax; febio_spec.Control.time_stepper.max_retries=max_retries; febio_spec.Control.time_stepper.opt_iter=opt_iter; febio_spec.Control.max_refs=max_refs; febio_spec.Control.max_ups=max_ups; %Material section febio_spec.Material.material{1}.ATTR.type='Ogden'; febio_spec.Material.material{1}.ATTR.id=1; febio_spec.Material.material{1}.c1=c1; febio_spec.Material.material{1}.m1=m1; febio_spec.Material.material{1}.k=k1; febio_spec.Material.material{2}.ATTR.type='Ogden'; febio_spec.Material.material{2}.ATTR.id=2; febio_spec.Material.material{2}.c1=c2; febio_spec.Material.material{2}.m1=m2; febio_spec.Material.material{2}.k=k2; febio_spec.Material.material{3}.ATTR.type='rigid body'; febio_spec.Material.material{3}.ATTR.id=3; febio_spec.Material.material{3}.density=1; febio_spec.Material.material{3}.center_of_mass=mean(V_implant,1); %Geometry section % -> Nodes febio_spec.Geometry.Nodes{1}.ATTR.name='nodeSet_all'; %The node set name febio_spec.Geometry.Nodes{1}.node.ATTR.id=(1:size(V,1))'; %The node id's febio_spec.Geometry.Nodes{1}.node.VAL=V; %The nodel coordinates % -> Elements febio_spec.Geometry.Elements{1}.ATTR.type='tet4'; %Element type of this set febio_spec.Geometry.Elements{1}.ATTR.mat=1; %material index for this set febio_spec.Geometry.Elements{1}.ATTR.name='Bone'; %Name of the element set febio_spec.Geometry.Elements{1}.elem.ATTR.id=(1:1:size(E_bone,1))'; %Element id's febio_spec.Geometry.Elements{1}.elem.VAL=E_bone; febio_spec.Geometry.Elements{2}.ATTR.type='tet4'; %Element type of this set febio_spec.Geometry.Elements{2}.ATTR.mat=2; %material index for this set febio_spec.Geometry.Elements{2}.ATTR.name='Cement'; %Name of the element set febio_spec.Geometry.Elements{2}.elem.ATTR.id=size(E_bone,1)+(1:1:size(E_cement,1))'; %Element id's febio_spec.Geometry.Elements{2}.elem.VAL=E_cement; febio_spec.Geometry.Elements{3}.ATTR.type='tri3'; %Element type of this set febio_spec.Geometry.Elements{3}.ATTR.mat=3; %material index for this set febio_spec.Geometry.Elements{3}.ATTR.name='Bone'; %Name of the element set febio_spec.Geometry.Elements{3}.elem.ATTR.id=size(E_bone,1)+size(E_cement,1)+(1:1:size(F_implant,1))'; %Element id's febio_spec.Geometry.Elements{3}.elem.VAL=F_implant; % -> NodeSets febio_spec.Geometry.NodeSet{1}.ATTR.name='bcSupportList'; febio_spec.Geometry.NodeSet{1}.node.ATTR.id=bcSupportList(:); %Boundary condition section % -> Fix boundary conditions febio_spec.Boundary.fix{1}.ATTR.bc='x'; febio_spec.Boundary.fix{1}.ATTR.node_set=febio_spec.Geometry.NodeSet{1}.ATTR.name; febio_spec.Boundary.fix{2}.ATTR.bc='y'; febio_spec.Boundary.fix{2}.ATTR.node_set=febio_spec.Geometry.NodeSet{1}.ATTR.name; febio_spec.Boundary.fix{3}.ATTR.bc='z'; febio_spec.Boundary.fix{3}.ATTR.node_set=febio_spec.Geometry.NodeSet{1}.ATTR.name; % -> Prescribed boundary conditions on the rigid body febio_spec.Boundary.rigid_body{1}.ATTR.mat=3; febio_spec.Boundary.rigid_body{1}.fixed{1}.ATTR.bc='x'; febio_spec.Boundary.rigid_body{1}.fixed{2}.ATTR.bc='y'; febio_spec.Boundary.rigid_body{1}.fixed{3}.ATTR.bc='Rx'; febio_spec.Boundary.rigid_body{1}.fixed{4}.ATTR.bc='Ry'; febio_spec.Boundary.rigid_body{1}.fixed{5}.ATTR.bc='Rz'; % febio_spec.Boundary.rigid_body{1}.fixed{6}.ATTR.bc='z'; % febio_spec.Boundary.rigid_body{1}.prescribed.ATTR.bc='z'; % febio_spec.Boundary.rigid_body{1}.prescribed.ATTR.lc=1; % febio_spec.Boundary.rigid_body{1}.prescribed.VAL=displacementMagnitude; febio_spec.Boundary.rigid_body{1}.force.ATTR.bc='z'; febio_spec.Boundary.rigid_body{1}.force.ATTR.lc=1; febio_spec.Boundary.rigid_body{1}.force.VAL=forceBody; %Output section % -> log file febio_spec.Output.logfile.ATTR.file=febioLogFileName; febio_spec.Output.logfile.node_data{1}.ATTR.file=febioLogFileName_disp; febio_spec.Output.logfile.node_data{1}.ATTR.data='ux;uy;uz'; febio_spec.Output.logfile.node_data{1}.ATTR.delim=','; febio_spec.Output.logfile.node_data{1}.VAL=1:size(V,1); febio_spec.Output.logfile.rigid_body_data{1}.ATTR.file=febioLogFileName_force; febio_spec.Output.logfile.rigid_body_data{1}.ATTR.data='Fx;Fy;Fz'; febio_spec.Output.logfile.rigid_body_data{1}.ATTR.delim=','; febio_spec.Output.logfile.rigid_body_data{1}.VAL=3; %Rigid body material id febio_spec.Output.logfile.element_data{1}.ATTR.file=febioLogFileName_stress; febio_spec.Output.logfile.element_data{1}.ATTR.data='s1;s2;s3'; febio_spec.Output.logfile.element_data{1}.ATTR.delim=','; febio_spec.Output.logfile.element_data{1}.VAL=1:1:size(E_solid,1); %Rigid body material id febio_spec.Output.logfile.element_data{2}.ATTR.file=febioLogFileName_strainEnergy; febio_spec.Output.logfile.element_data{2}.ATTR.data='sed'; febio_spec.Output.logfile.element_data{2}.ATTR.delim=','; febio_spec.Output.logfile.element_data{2}.VAL=1:1:size(E_solid,1);
Quick viewing of the FEBio input file structure
The febView function can be used to view the xml structure in a MATLAB figure window.
febView(febio_spec); %Viewing the febio file
Exporting the FEBio input file
Exporting the febio_spec structure to an FEBio input file is done using the febioStruct2xml function.
febioStruct2xml(febio_spec,febioFebFileName); %Exporting to file and domNode
Running the FEBio analysis
To run the analysis defined by the created FEBio input file the runMonitorFEBio function is used. The input for this function is a structure defining job settings e.g. the FEBio input file name. The optional output runFlag informs the user if the analysis was run succesfully.
febioAnalysis.run_filename=febioFebFileName; %The input file name febioAnalysis.run_logname=febioLogFileName; %The name for the log file febioAnalysis.disp_on=1; %Display information on the command window febioAnalysis.disp_log_on=1; %Display convergence information in the command window febioAnalysis.runMode=runMode;%'internal'; febioAnalysis.t_check=0.25; %Time for checking log file (dont set too small) febioAnalysis.maxtpi=1e99; %Max analysis time febioAnalysis.maxLogCheckTime=10; %Max log file checking time [runFlag]=runMonitorFEBio(febioAnalysis);%START FEBio NOW!!!!!!!!
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% --- STARTING FEBIO JOB --- 05-May-2020 18:46:03 Waiting for log file... Proceeding to check log file...05-May-2020 18:46:03 ------- converged at time : 0.1 ------- converged at time : 0.2 ------- converged at time : 0.3 ------- converged at time : 0.4 ------- converged at time : 0.5 ------- converged at time : 0.6 ------- converged at time : 0.7 ------- converged at time : 0.8 ------- converged at time : 0.9 ------- converged at time : 1 --- Done --- 05-May-2020 18:46:45

Import FEBio results
if runFlag==1 %i.e. a succesful run
% Importing nodal displacements from a log file [time_mat, N_disp_mat,~]=importFEBio_logfile(fullfile(savePath,febioLogFileName_disp)); %Nodal displacements time_mat=[0; time_mat(:)]; %Time N_disp_mat=N_disp_mat(:,2:end,:); sizImport=size(N_disp_mat); sizImport(3)=sizImport(3)+1; N_disp_mat_n=zeros(sizImport); N_disp_mat_n(:,:,2:end)=N_disp_mat; N_disp_mat=N_disp_mat_n; DN=N_disp_mat(:,:,end); DN_magnitude=sqrt(sum(DN(:,3).^2,2)); V_def=V+DN;
Importing element strain energies from a log file
[~,E_energy,~]=importFEBio_logfile(fullfile(savePath,febioLogFileName_strainEnergy)); %Element strain energy %Remove nodal index column E_energy=E_energy(:,2:end,:); %Add initial state i.e. zero energy sizImport=size(E_energy); sizImport(3)=sizImport(3)+1; E_energy_mat_n=zeros(sizImport); E_energy_mat_n(:,:,2:end)=E_energy; E_energy=E_energy_mat_n;
[FE_face,C_energy_face]=element2patch(E_solid,E_energy(:,:,end),'tet4');
[CV]=faceToVertexMeasure(FE_face,V,C_energy_face);
[indBoundary]=tesBoundary(FE_face,V);
Fb_solid=FE_face(indBoundary,:);
Plotting the simulated results using anim8 to visualize and animate deformations
% Create basic view and store graphics handle to initiate animation hf=cFigure; %Open figure gtitle([febioFebFileNamePart,': Press play to animate']); hp1=gpatch(Fb_solid,V_def,CV,'k',1); %Add graphics object to animate hp1.FaceColor='Interp'; hp2=gpatch(F_implant,V,0.5*ones(1,3),'none',0.25); %A static graphics object axisGeom(gca,fontSize); colormap(gjet(250)); colorbar; caxis([0 max(E_energy(:))/10]); axis([min(V_def(:,1)) max(V_def(:,1)) min(V_def(:,2)) max(V_def(:,2)) min(V_def(:,3)) max(V_def(:,3))]); %Set axis limits statically camlight headlight; % Set up animation features animStruct.Time=time_mat; %The time vector for qt=1:1:size(N_disp_mat,3) %Loop over time increments DN=N_disp_mat(:,:,qt); %Current displacement V_def=V+DN; %Current nodal coordinates [FE_face,C_energy_face]=element2patch(E_solid,E_energy(:,:,qt),'tet4'); [CV]=faceToVertexMeasure(FE_face,V,C_energy_face); %Set entries in animation structure animStruct.Handles{qt}=[hp1 hp1 hp2]; %Handles of objects to animate animStruct.Props{qt}={'Vertices','CData','Vertices'}; %Properties of objects to animate animStruct.Set{qt}={V_def,CV,V_def}; %Property values for to set in order to animate end anim8(hf,animStruct); %Initiate animation feature drawnow;

end
GIBBON footer text
License: https://github.com/gibbonCode/GIBBON/blob/master/LICENSE
GIBBON: The Geometry and Image-based Bioengineering add-On. A toolbox for image segmentation, image-based modeling, meshing, and finite element analysis.
Copyright (C) 2019 Kevin Mattheus Moerman
This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/.