This article demonstrates a workflow that uses built-in functionality in MATLAB® and related products to develop the algorithm for an isolated digit recognition system. The system is speaker-dependent—that is, it recognizes speech only from one particular speaker’s voice.

The development workflow consists of three steps:
- Speech acquisition
- Speech analysis
- User interface development

Acquiring Speech
For training, speech is acquired from a microphone and brought into the development environment for offline analysis. For testing, speech is continuously streamed into the environment for online processing.

During the training stage, it is necessary to record repeated utterances of each digit in the dictionary. For example, we repeat the word ‘one’ many times with a pause between each utterance.

Using the following MATLAB code with a standard PC sound card, we capture ten...
seconds of speech from a microphone input at 8000 samples per second:

```matlab
Fs = 8000; % Sampling Freq (Hz)
Duration = 10; % Duration (sec)
y = wavrecord(Duration*Fs,Fs);
```

We save the data to disk as `mywavefile.wav`:

This approach works well for training data. In the testing stage, however, we need to continuously acquire and buffer speech samples, and at the same time, process the incoming speech frame by frame, or in continuous groups of samples.

We use Data Acquisition Toolbox™ to set up continuous acquisition of the speech signal and simultaneously extract frames of data for processing.

The MATLAB code shown in Figure 1 uses a Windows sound card to capture data at a sampling rate of 8000 Hz. Data is acquired and processed in frames of 80 samples. The process continues until the “RUNNING” flag is set to zero.

```
% Define system parameters
framesize = 80; % Framesize (samples)
Fs = 8000; % Sampling Frequency (Hz)
RUNNING = 1; % A flag to continue data capture

% Setup data acquisition from sound card
ai = analoginput('winsound');
addchannel(ai, 1);

% Configure the analog input object.
set(ai, 'SampleRate', Fs);
set(ai, 'SamplesPerTrigger', framesize);
set(ai, 'TriggerRepeat',inf);
set(ai, 'TriggerType', 'immediate');

% Start acquisition
start(ai)

% Keep acquiring data while “RUNNING” ~= 0
while RUNNING
  % Acquire new input samples
  newdata = getdata(ai,ai.SamplesPerTrigger);
  % Do some processing on newdata
  ...
  <DO SOMETHING>
  ...

  % Set RUNNING to zero if we are done
  if <WE ARE DONE>
    RUNNING = 0;
  end
end

% Stop acquisition
stop(ai);

% Disconnect/Cleanup
delete(ai);
```

Figure 1. MATLAB code for capturing speech data.

Analyzing the Acquired Speech

We begin by developing a word-detection algorithm that separates each word from ambient noise. We then derive an acoustic model that gives a robust representation of each word at the training stage. Finally, we select an appropriate classification algorithm for the testing stage.

Developing a Speech-Detection Algorithm

The speech-detection algorithm is developed by processing the prerecorded speech frame by frame within a simple loop. For example, the MATLAB code in Figure 2 continuously reads 160 sample frames from the data in 'speech'.

To detect isolated digits, we use a combination of signal energy and zero-crossing counts for each speech frame. Signal
Since the Yule-Walker algorithm fits an autoregressive linear prediction filter model to the signal, we must specify an order of this filter. We select an arbitrary value of 12, which is typical in speech applications.

Figures 3a and 3b plot the PSD estimate of three different utterances of the words ‘one’ and ‘two’. We can see that the peaks in the PSD remain consistent for a particular digit but differ between digits. This means that we can derive the acoustic models in our system from spectral features.

From the linear predictive filter coefficients, we can obtain several feature vectors using Signal Processing Toolbox functions, including reflection coefficients, log area ratio parameters, and line spectral frequencies.

One set of spectral features commonly used in speech applications because of its robustness is Mel Frequency Cepstral Coefficients (MFCCs). MFCCs give a measure of the energy within overlapping frequency bins of a spectrum with a warped (Mel) frequency scale.

Since speech can be considered to be short-term stationary, MFCC feature vectors are calculated for each frame of detected speech. Using many utterances of a digit and combining all the feature vectors, we can estimate a multidimensional probability density function (PDF) of the vectors for a specific digit.

During the testing stage, we extract the MFCC vectors from the test speech and use a probabilistic measure to determine the source digit with maximum likelihood. The challenge then becomes to select an appropriate PDF to represent the MFCC feature vector distributions.

1We modified an MFCC implementation from the Auditory Toolbox, available via the MATLAB Central Link Exchange. www.mathworks.com/auditory-toolbox
Figure 3a. Yule Walker PSD estimate of three different utterances of the word “ONE.”

Figure 3b. Yule Walker PSD estimate of three different utterances of the word “TWO.”
Figure 4a shows the distribution of the first dimension of MFCC feature vectors extracted from the training data for the digit 'one'. We could use the `dfittool` in Statistics Toolbox™ to fit a PDF, but the distribution looks quite arbitrary, and standard distributions do not provide a good fit. One solution is to fit a Gaussian mixture model (GMM), a sum of weighted Gaussians (Figure 4b). The complete Gaussian mixture density is parameterized by the mixture weights, mean vectors, and covariance matrices from all component densities. For isolated digit recognition, each digit is represented by the parameters of its GMM.

To estimate the parameters of a GMM for a set of MFCC feature vectors extracted from training speech, we use an iterative expectation-maximization (EM) algorithm to obtain a maximum likelihood (ML) estimate. Given some MFCC training data in the variable `MFCCtraindata`, we use the Statistics Toolbox `gmdistribution` function to estimate the GMM parameters. This function is all that is required to perform the iterative EM calculations.

```matlab
% Number of Gaussian component densities
M = 8;
model = gmdistribution.fit(MFCCtraindata, M);
```

Selecting a Classification Algorithm

After estimating a GMM for each digit, we have a dictionary for use at the testing stage. Given some test speech, we again extract the MFCC feature vectors from each frame of the detected word. The objective is to find the digit model with the maximum a posteriori probability for the set of test feature vectors, which reduces to maximizing a log-likelihood value. Given a digit model `gmmmodel` and some test feature vectors...
If the goal is to implement the speech-recognition algorithm in hardware, we could use MATLAB and related products to simulate fixed-point effects, automatically generate embedded C code, and verify the generated code.

 testData, the log-likelihood value is easily computed using the posterior function in Statistics Toolbox:

\[
[P, \text{log}_\text{like}] = \text{posterior}(\text{gmmmodel}, \text{testdata});
\]

We repeat this calculation using each digit’s model. The test speech is classified as the digit with the GMM that produces the maximum log-likelihood value.

Building the User Interface

After developing the isolated digit recognition system in an offline environment with prerecorded speech, we migrate the system to operate on streaming speech from a microphone input. We use MATLAB GUIDE tools to create an interface that displays the time domain plot of each detected word as well as the classified digit (Figure 5).

Extending the Application

The algorithm described in this article can be extended to recognize isolated words instead of digits, or to recognize words from several speakers by developing a speaker-independent system.