Note: This page has been translated by MathWorks. Click here to see

To view all translated materials including this page, select Country from the country navigator on the bottom of this page.

To view all translated materials including this page, select Country from the country navigator on the bottom of this page.

The probability density function for the generalized Pareto distribution with
shape parameter *k* ≠ *0*, scale parameter
*σ*, and threshold parameter *θ*, is

$$y\text{}\text{}\text{\hspace{0.17em}}\text{\hspace{0.17em}}=\text{}\text{\hspace{0.17em}}f(x|k,\sigma ,\theta )=\text{}\text{}\text{}\text{}\text{}\text{}\text{\hspace{0.17em}}\left(\frac{1}{\sigma}\right){\left(1+k\frac{(x-\theta )}{\sigma}\right)}^{-1-\frac{1}{k}}$$

for *θ* < *x*, when *k* >
0, or for *θ* < *x* < *θ* –
*σ*/*k* when *k* <
0.

For *k* = 0, the density is

$$y\text{}\text{}\text{\hspace{0.17em}}\text{\hspace{0.17em}}=\text{}\text{\hspace{0.17em}}f(x|0\text{},\sigma ,\theta )=\text{}\text{}\text{}\text{}\text{}\text{}\text{\hspace{0.17em}}\left(\frac{1}{\sigma}\right){e}^{-\frac{(x-\theta )}{\sigma}}$$

for *θ* < *x*.

If *k* = 0 and *θ* = 0, the generalized Pareto
distribution is equivalent to the exponential distribution. If *k*
> 0 and *θ* = *σ*/*k*, the
generalized Pareto distribution is equivalent to the Pareto distribution with a
scale parameter equal to *σ*/*k* and a shape parameter equal to 1/*k*.

Like the exponential distribution, the generalized Pareto distribution is often
used to model the tails of another distribution. For example, you might have washers
from a manufacturing process. If random influences in the process lead to
differences in the sizes of the washers, a standard probability distribution, such
as the normal, could be used to model those sizes. However, while the normal
distribution might be a good model near its mode, it might not be a good fit to real
data in the tails and a more complex model might be needed to describe the full
range of the data. On the other hand, only recording the sizes of washers larger (or
smaller) than a certain threshold means you can fit a separate model to those tail
data, which are known as *exceedences*. You can use the
generalized Pareto distribution in this way, to provide a good fit to extremes of
complicated data.

The generalized Pareto distribution allows a continuous range of possible shapes that includes both the exponential and Pareto distributions as special cases. You can use either of those distributions to model a particular dataset of exceedences. The generalized Pareto distribution allows you to “let the data decide” which distribution is appropriate.

The generalized Pareto distribution has three basic forms, each corresponding to a limiting distribution of exceedence data from a different class of underlying distributions.

Distributions whose tails decrease exponentially, such as the normal, lead to a generalized Pareto shape parameter of zero.

Distributions whose tails decrease as a polynomial, such as Student's

*t*, lead to a positive shape parameter.Distributions whose tails are finite, such as the beta, lead to a negative shape parameter.

The generalized Pareto distribution is used in the tails of distribution fit
objects of the `paretotails`

object.

If you generate a large number of random values from a Student's
*t* distribution with 5 degrees of freedom, and then discard
everything less than 2, you can fit a generalized Pareto distribution to those
exceedences.

rng default % For reproducibility t = trnd(5,5000,1); y = t(t > 2) - 2; paramEsts = gpfit(y)

`paramEsts = `*1×2*
0.1445 0.7225

Notice that the shape parameter estimate (the first element) is positive, which is
what you would expect based on exceedences from a Student's *t*
distribution.

hist(y+2,2.25:.5:11.75); h = findobj(gca,'Type','patch'); h.FaceColor = [.8 .8 1]; xgrid = linspace(2,12,1000); line(xgrid,.5*length(y)*... gppdf(xgrid,paramEsts(1),paramEsts(2),2));

Compute the pdf of three generalized Pareto distributions. The first has shape parameter `k = -0.25`

, the second has `k = 0`

, and the third has `k = 1`

.

x = linspace(0,10,1000); y1 = gppdf(x,-.25,1,0); y2 = gppdf(x,0,1,0); y3 = gppdf(x,1,1,0);

Plot the three pdfs on the same figure.

figure; plot(x,y1,'-', x,y2,'--', x,y3,':') legend({'K < 0' 'K = 0' 'K > 0'});

[1] Embrechts, P., C. Klüppelberg, and T. Mikosch. *Modelling
Extremal Events for Insurance and Finance*. New York: Springer,
1997.

[2] Kotz, S., and S. Nadarajah. *Extreme Value Distributions: Theory
and Applications*. London: Imperial College Press,
2000.