Asked by SB
on 19 Nov 2012

Hi everyone, I'm trying to write a function that finds a point at

which two functions f(x) and g(x) intersect, i.e., f(x) = g(x). I'm using

Newton's Method and making and h(x)=f(x)-g(x) and h'(x) as well, but I'm not getting the right x-value. Please help me debug my code!

% function x = fgIntersect(f, df, g, dg, x0, tol, maxIter) h=f(x0)-g(x0) dh=df(x0)-dg(x0) k=1; while k<=maxIter x=x0-h/dh; if abs(x-x0)<tol*abs(x) return end x0=x; k=k+1; end

end

*No products are associated with this question.*

Answer by Matt J
on 19 Nov 2012

Accepted answer

You're not updating h and dh within your loop.

Opportunities for recent engineering grads.

## 2 Comments

## Matt J (view profile)

Direct link to this comment:http://www.mathworks.com/matlabcentral/answers/54149#comment_112008

Give us example data that let's us reproduce the failure.

## SB (view profile)

Direct link to this comment:http://www.mathworks.com/matlabcentral/answers/54149#comment_112010

format compact; format long;

f = @(x) exp(x) - 3;

df = @(x) exp(x);

g = @(x) sqrt(x);

dg = @(x) .5*x^(-.5);

x = fgIntersect(f, df, g, dg, 1, 1e-6, 50)

x should equal 1.434542442506692

Another case:

format compact; format long;

p1 = [1 -2 3 -8];

p2 = [1 -3 2 -4];

f = @(x) polyval(p1,x);

df = @(x) polyval(polyder(p1),x);

g = @(x) polyval(p2,x);

dg = @(x) polyval(polyder(p2),x);

x = fgIntersect(f, df, g, dg, 2, 1e-6, 50)

x should be 1.561552842846145