Function Intersection using Newton's Method

22 views (last 30 days)
Hi everyone, I'm trying to write a function that finds a point at
which two functions f(x) and g(x) intersect, i.e., f(x) = g(x). I'm using
Newton's Method and making and h(x)=f(x)-g(x) and h'(x) as well, but I'm not getting the right x-value. Please help me debug my code!
% function x = fgIntersect(f, df, g, dg, x0, tol, maxIter)
h=f(x0)-g(x0)
dh=df(x0)-dg(x0)
k=1;
while k<=maxIter
x=x0-h/dh;
if abs(x-x0)<tol*abs(x)
return
end
x0=x;
k=k+1;
end
end
  2 Comments
SB
SB on 19 Nov 2012
Edited: SB on 19 Nov 2012
format compact; format long;
f = @(x) exp(x) - 3;
df = @(x) exp(x);
g = @(x) sqrt(x);
dg = @(x) .5*x^(-.5);
x = fgIntersect(f, df, g, dg, 1, 1e-6, 50)
x should equal 1.434542442506692
Another case:
format compact; format long;
p1 = [1 -2 3 -8];
p2 = [1 -3 2 -4];
f = @(x) polyval(p1,x);
df = @(x) polyval(polyder(p1),x);
g = @(x) polyval(p2,x);
dg = @(x) polyval(polyder(p2),x);
x = fgIntersect(f, df, g, dg, 2, 1e-6, 50)
x should be 1.561552842846145

Sign in to comment.

Accepted Answer

Matt J
Matt J on 19 Nov 2012
You're not updating h and dh within your loop.
  4 Comments
Torsten
Torsten on 26 Nov 2022
Edited: Torsten on 27 Nov 2022
f = @(x) exp(x) - 3;
df = @(x) exp(x);
g = @(x) sqrt(x);
dg = @(x) .5*x^(-.5);
x = fgIntersect(f, df, g, dg, 1, 1e-6, 50)
x = 1.4345
p1 = [1 -2 3 -8];
p2 = [1 -3 2 -4];
f = @(x) polyval(p1,x);
df = @(x) polyval(polyder(p1),x);
g = @(x) polyval(p2,x);
dg = @(x) polyval(polyder(p2),x);
x = fgIntersect(f, df, g, dg, 2, 1e-6, 50)
x = 1.5616
function x = fgIntersect(f, df, g, dg, x0, tol, maxIter)
h=f(x0)-g(x0);
dh=df(x0)-dg(x0);
k=1;
while k<=maxIter
x=x0-h/dh;
if abs(x-x0)<tol*abs(x)
return
end
x0=x;
h = f(x0)-g(x0);
dh = df(x0)-dg(x0);
k=k+1;
end
end

Sign in to comment.

More Answers (0)

Categories

Find more on Symbolic Math Toolbox in Help Center and File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!