function gsp()
% GSP General Piecewise Spline Interpolation
%
% GSP is a graphical user interface which takes x and y points as inputs, along with
% the order m, then outputs mth order splines between each of the x points. In most
% cases additional constraints are to be entered as well.
%
% Example:
%
% Input:
%
% x points : [1 2 3 4]
% y points : [2 7 -1 5]
% Order : 2
% *One Additional Constraint is Required*
% f''(1) = 0
%
% Output:
% Polynomials:
% 0 5 -3
% -13 57 -55
% 27 -183 305
%
% In the Range:
% 1 2
% 2 3
% 3 4
%
% This means the following:
%
% for 1 < x < 2 y = 0*x^2 + 5*x - 3
% for 2 < x < 3 y = -13*x^2 + 57*x - 55
% for 3 < x < 4 y = 27*x^2 - 183*x + 305
%
% You can obtain the mentioned forms using poly2sym (requires Symbolic Math Toolbox).
%
% If you want to delete constraints, put its values as '*'. For more help and examples,
% see the pictures accompanied in the zip file. An optional feature can be
% accesessed if the function MQUAKE is present. mquake.m can be found here:
% <http://www.mathworks.com/matlabcentral/fileexchange/22816>
%
% To launch the GUI, type gsp in the command window with this file in the current directory.
% Alternatively, you can choose Debug -> Run from this editor window, or press F5.
%
%
% Husam Aldahiyat, 2009
% numandina@gmail.com
%
global aA
%% figure and uicontrols
figure('units','normalized','position',[.2 .2 .65 .65],'menubar','none','numbertitle','off','color','w','name','General Splines')
axes('position',[.35 .1 .5 .5])
ed1=uicontrol('style','edit','units','normalized','position',[.025 .875 .1 .05],'backgroundcolor','w');
uicontrol('style','text','units','normalized','position',[.025 .94 .1 .025],'backgroundcolor','w','string','x Points');
ed2=uicontrol('style','edit','units','normalized','position',[.025 .75 .1 .05],'backgroundcolor','w');
uicontrol('style','text','units','normalized','position',[.025 .81 .1 .025],'backgroundcolor','w','string','Y Points');
px=uicontrol('style','listbox','units','normalized','position',[.2 .75 .1 .2],'max',2,'backgroundcolor','w',...
'string',{'Example 1';'Example 2';'Example 3';'Example 4';'Example 5';'Example 6'},'callback',@pn);
ed3=uicontrol('style','edit','units','normalized','position',[.045 .63 .05 .05],'backgroundcolor','w','callback',@cond);
uicontrol('style','text','units','normalized','position',[.025 .69 .1 .025],'backgroundcolor','w','string','Spline Order');
err=uicontrol('style','text','foregroundcolor','r','units','normalized','position',[.025 .55 .22 .05],'backgroundcolor','w',...
'horizontalalignment','left');
uicontrol('style','pushbutton','units','normalized','position',[.15 .63 .05 .05],'backgroundcolor','w','callback',@go,'string','Solve');
pv=uicontrol('style','pushbutton','units','normalized','position',[.22 .63 .075 .05],'backgroundcolor','w','callback',@dv,...
'string','Continuity','visible','off');
thih=uicontrol('style','edit','units','normalized','position',[.025 .025 .125 .525],'backgroundcolor','w','max',2,'string','',...
'horizontalalignment','right','fontsize',13,'fontname','calibri');
edc=uicontrol('style','edit','units','normalized','position',[.15 .025 .075 .525],'backgroundcolor','w','max',2,...
'horizontalalignment','left','fontsize',13,'fontname','calibri','string','');
Ap=uicontrol('style','listbox','units','normalized','position',[.35 .675 .5 .25],'backgroundcolor','w','max',2,'fontname','courier',...
'callback',@chv);
Ac=uicontrol('style','listbox','units','normalized','position',[.85 .675 .125 .25],'backgroundcolor','w','max',2,'fontname','courier');
uicontrol('style','text','units','normalized','position',[.35 .935 .5 .025],'backgroundcolor','w','max',2,'string','Spline Polynomials');
uicontrol('style','text','units','normalized','position',[.85 .935 .12 .025],'backgroundcolor','w','max',2,'string','For x in the range');
function cond(varargin)
m=str2double(get(ed3,'string'));
if m>1
x=str2num(get(ed1,'string')); %#ok
if isempty(x)
set(err,'string','Please give values for x')
return
end
set(err,'string',sprintf('%d Additional Condition(s) Needed',m-1))
trip=cell(m*2,1);
for k1=1:m
koi=repmat('''',1,k1);
trip{k1}=['f ',koi,'(',num2str(x(1)),') = '];
trip{k1+m}=['f ',koi,'(',num2str(x(end)),') = '];
end
set(thih,'string',trip);
else
set(err,'string','No Additional Constraints Required');
set(edc,'string','')
set(thih,'string','')
end
if m>1
set(edc,'string',repmat('*',m*2,1))
end
end
function pn(varargin)
switch get(px,'value')
case 1
set(ed1,'string','0 10')
set(ed2,'string','0 0')
set(ed3,'string','2')
cond
set(err,'string','')
set(edc,'string',['5';'*';'*';'*'])
case 2
set(ed1,'string','0 1 2')
set(ed2,'string','0 1 0')
set(ed3,'string','3')
cond
set(err,'string','')
set(edc,'string',['0';'*';'*';'0';'*';'*'])
case 3
set(ed1,'string','0 1 2')
set(ed2,'string','0 1 0')
set(ed3,'string','5')
cond
set(err,'string','')
set(edc,'string',['0';'0';'*';'*';'*';'0';'0';'*';'*';'*'])
case 4
set(ed1,'string','1 2 3 4 7')
set(ed2,'string','2 -4 0 3 0')
set(ed3,'string','3')
cond
set(err,'string','')
set(edc,'string',['*';'0';'*';'*';'0';'*'])
case 5
set(ed1,'string','1 2 4 6 8 10')
set(ed2,'string','2 4 -2 3 1 0')
set(ed3,'string','5')
cond
set(err,'string','')
set(edc,'string',strvcat('5','0','*','*','*','-4','3','*','*','*')) %#ok
case 6
set(ed1,'string','1 2 4 6 8 10')
set(ed2,'string','2 4 -2 3 1 0')
set(ed3,'string','5')
cond
set(err,'string','')
set(edc,'string',strvcat('-5','0','*','*','*','4','3','*','*','*')) %#ok
end
end
%% Solution
function go(varargin)
set(pv,'visible','off')
x=str2num(get(ed1,'string')); %#ok
y=str2num(get(ed2,'string')); %#ok
if length(y)~=length(x)
set(err,'string','Points are not of equal lengths')
return
end
if any(find(abs(sort(x)-x)>1e-10))
set(err,'string','x Points need to be ascending')
return
end
if length(unique(x))<length(x)
set(err,'string','Repeated x points found')
return
end
m=str2double(get(ed3,'string'));
n=length(x)-1; % number of splines
g=fliplr(0:m);
DAT=zeros((m+1)*n);
B=zeros(n*(1+m),1);
B(1:n+1)=y;
S=zeros(n,m+1);
for k=1:n
DAT(k,k+m*k-m:k+m*k)=x(k).^g;
end
DAT(k+1,k+m*k-m:k+m*k)=x(k+1).^g;
k=k+2;
poln=ones(1,m+1);
for k2=1:m
pol=[poln,zeros(1,(k2-1))];
for p=1:n-1
DAT(k+p+k2*n-k2-n,p*m+p-m:p*m+p+m+1)=...
repmat(pol,1,2).*repmat(x(p+1),1,(m+1)*2).^repmat(g-(k2-1),1,2).*[ones(1,m+1),-ones(1,m+1)];
end
poln=polyder(poln);
end
aa=(get(edc,'string'));
if m>1
con=find(~ismember(1:m*2,findstr(aa(:,1)','*'))==1);
if length(con)>m-1
set(err,'string','Too many constraints entered')
return
end
if isempty(con)
set(err,'string','Too few constraints entered')
return
end
for lp=1:m-1
poln=ones(1,m+1);
wo=con(1);
if wo>m
con(1)=con(1)-m;
end
for h1=1:con(1)
poln=polyder(poln);
end
if wo>m
DAT(end-(m-1-lp),end-m:end)=repmat(x(end),1,m+1).^(g-con(1)).*[poln,zeros(1,m+1-length(poln))];
B(end-(m-1-lp))=str2double(aa(wo,:));
end
if wo<=m
DAT(end-(m-1-lp),1:m+1)=[poln,zeros(1,m+1-length(poln))].*repmat(x(1),1,m+1).^(g-con(1));
B(end-(m-1-lp))=str2double(aa(con(1),:));
end
con(1)=[];
end
end
DAT(isnan(DAT))=0;
s=DAT\B;
C=zeros(n,2);
for k=1:n
S(k,:)=s(k*(m+1)-m:k*(m+1));
C(k,:)=x(k:k+1);
end
set(err,'string','')
%% Displaying Results
set(Ap,'string',num2str(S))
set(Ac,'string',num2str(C))
cla reset
hold on
st=[1 0 0;0 1 0];
for k=1:n
t=linspace(C(k,1),C(k,2),100);
f=polyval(S(k,:),t);
aA(k)=plot(t,f);
set(findobj('color','b'),'color',st(mod(k,2)+1,:),'linewidth',2)
end
plot(x,y,'.')
set(findobj('marker','.'),'markersize',10,'color','k')
xlabel('x')
ylabel('y')
xlim([x(1)-1 x(end)+1])
h=axis;
if h(3)>min(y)-1
h(3)=min(y)-1;
end
if h(4)<max(y)+1
h(4)=max(y)+1;
end
axis(h)
set(pv,'visible','on')
end
function dv(varargin)
S=str2num(get(Ap,'string')); %#ok
C=str2num(get(Ac,'string')); %#ok
st=[1 0 0;0 1 0];
m=str2double(get(ed3,'string'));
n=length(str2num(get(ed1,'string')))-1; %#ok
figure('color','w','menubar','none','numbertitle','off','name','Continuity')
for k2=1:m
for g=1:n
S(g,:)=[zeros(m+1-length([polyder(S(g,1:end-k2+1)),zeros(1,k2)])),polyder(S(g,1:end-k2+1)),zeros(1,k2)];
end
subplot(ceil(m/2),ceil(m/ceil(m/2)),k2)
hold on
for k=1:n
t=linspace(C(k,1),C(k,2),100);
f=polyval(S(k,1:end-k2),t);
plot(t,f);
set(findobj('color','b'),'color',st(mod(k,2)+1,:),'linewidth',2)
end
title(sprintf('Derivate Order %d',k2))
end
end
function chv(varargin)
h=axis;
try
mquake(aA(get(Ap,'value')),(h(2)+h(4))/4,.5,1)
catch
end
end
end