Code covered by the BSD License  

Highlights from
Lithium Battery Model, Simscape Language and Simulink Design Optimization

image thumbnail

Lithium Battery Model, Simscape Language and Simulink Design Optimization

by

 

19 Apr 2012 (Updated )

Multi-temperature lithium battery model using Simscape language and Simulink Design Optimization

ssc_lithium_cell_1RC_ini.m
% Initialization file for demo ssc_lithium_cell_1RC.mdl. Demo
% based on T. Huria, M. Ceraolo, J. Gazzarri, R. Jackey. "High Fidelity
% Electrical Model with Thermal Dependence for Characterization and
% Simulation of High Power Lithium Battery Cells," IEEE International
% Electric Vehicle Conference, March 2012
%
% Copyright 2012 The MathWorks, Inc.


%% Lookup Table Breakpoints

SOC_LUT = [0 0.1 0.25 0.5 0.75 0.9 1]';
Temperature_LUT = [5 20 40] + 273.15;

%% Em Branch Properties (OCV, Capacity)

% Battery capacity
Capacity_LUT = [
    28.0081   27.6250   27.6392]; %Ampere*hours

% Em open-circuit voltage vs SOC rows and T columns
Em_LUT = [
    3.4966    3.5057    3.5148
    3.5519    3.5660    3.5653
    3.6183    3.6337    3.6402
    3.7066    3.7127    3.7213
    3.9131    3.9259    3.9376
    4.0748    4.0777    4.0821
    4.1923    4.1928    4.1930]; %Volts

%% Terminal Resistance Properties

% R0 resistance vs SOC rows and T columns
R0_LUT = [
    0.0117    0.0085    0.0090
    0.0110    0.0085    0.0090
    0.0114    0.0087    0.0092
    0.0107    0.0082    0.0088
    0.0107    0.0083    0.0091
    0.0113    0.0085    0.0089
    0.0116    0.0085    0.0089]; %Ohms

%% RC Branch 1 Properties

% R1 Resistance vs SOC rows and T columns
R1_LUT = [
    0.0109    0.0029    0.0013
    0.0069    0.0024    0.0012
    0.0047    0.0026    0.0013
    0.0034    0.0016    0.0010
    0.0033    0.0023    0.0014
    0.0033    0.0018    0.0011
    0.0028    0.0017    0.0011]; %Ohms

% C1 Capacitance vs SOC rows and T columns
C1_LUT = [
    1913.6    12447    30609
    4625.7    18872    32995
    23306     40764    47535
    10736     18721    26325
    18036     33630    48274
    12251     18360    26839
    9022.9    23394    30606]; %Farads

   
%% Thermal Properties

% Cell dimensions and sizes
cell_thickness = 0.0084; %m
cell_width = 0.215; %m
cell_height = 0.220; %m

% Cell surface area
cell_area = 2 * (...
    cell_thickness * cell_width +...
    cell_thickness * cell_height +...
    cell_width * cell_height); %m^2

% Cell volume
cell_volume = cell_thickness * cell_width * cell_height; %m^3

% Cell mass
cell_mass = 1; %kg

% Volumetric heat capacity
% assumes uniform heat capacity throughout the cell
% ref: J. Electrochemical Society 158 (8) A955-A969 (2011) pA962
cell_rho_Cp = 2.04E6; %J/m3/K

% Specific Heat
cell_Cp_heat = cell_rho_Cp * cell_volume; %J/kg/K

% Convective heat transfer coefficient
% For natural convection this number should be in the range of 5 to 25
h_conv = 5; %W/m^2/K


%% Initial Conditions

% Charge deficit
Qe_init = 15.6845; %Ampere*hours

% Ambient Temperature
T_init = 20 + 273.15; %K


Contact us