Code covered by the BSD License  

Highlights from
Tutorial on solving BVPs with BVP4C

  • bratubvp BRATUBVP Exercise for Example 1 of the BVP tutorial.
  • bratubvp BRATUBVP Exercise for Example 1 of the BVP tutorial.
  • bratubvp BRATUBVP Exercise for Example 1 of the BVP tutorial.
  • ex1bvp EX1BVP Example 1 of the BVP tutorial.
  • ex1bvp EX1BVP Example 1 of the BVP tutorial.
  • ex1bvp EX1BVP Example 1 of the BVP tutorial.
  • ex2bvp EX2BVP Example 2 of the BVP tutorial.
  • ex2bvp EX2BVP Example 2 of the BVP tutorial.
  • ex2bvp EX2BVP Example 2 of the BVP tutorial.
  • ex3bvp EX3BVP Example 3 of the BVP tutorial.
  • ex3bvp EX3BVP Example 3 of the BVP tutorial.
  • ex3bvp EX3BVP Example 3 of the BVP tutorial.
  • ex4bvp EX4BVP Example 4 of the BVP tutorial.
  • ex4bvp EX4BVP Example 4 of the BVP tutorial.
  • ex4bvp EX4BVP Example 4 of the BVP tutorial.
  • ex5bvp EX5BVP Example 5 of the BVP tutorial.
  • ex5bvp EX5BVP Example 5 of the BVP tutorial.
  • ex5bvp EX5BVP Example 5 of the BVP tutorial.
  • ex6bvp EX6BVP Example 6 of the BVP tutorial.
  • ex6bvp EX6BVP Example 6 of the BVP tutorial.
  • ex6bvp EX6BVP Example 6 of the BVP tutorial.
  • ex7bvp EX7BVP Example 7 of the BVP tutorial.
  • ex7bvp EX7BVP Example 7 of the BVP tutorial.
  • ex7bvp EX7BVP Example 7 of the BVP tutorial.
  • ex8bvp EX8BVP Example 8 of the BVP tutorial.
  • ex8bvp EX8BVP Example 8 of the BVP tutorial.
  • ex8bvp EX8BVP Example 8 of the BVP tutorial.
  • ex9bvp EX9BVP Example 9 of the BVP tutorial.
  • ex9bvp EX9BVP Example 9 of the BVP tutorial.
  • ex9bvp EX9BVP Example 9 of the BVP tutorial.
  • ex9mbvp EX9MBVP Example 9 of the BVP tutorial, solved as a multi-point BVP
  • gasbvp GASBVP Exercise for Example 5 of the BVP tutorial.
  • gasbvp GASBVP Exercise for Example 5 of the BVP tutorial.
  • gasbvp GASBVP Exercise for Example 5 of the BVP tutorial.
  • mmbvp MMBVP Exercise for Example 7 of the BVP tutorial.
  • mmbvp MMBVP Exercise for Example 7 of the BVP tutorial.
  • mmbvp MMBVP Exercise for Example 7 of the BVP tutorial.
  • trbvp TRBVP Exercise for Example 3 of the BVP tutorial.
  • trbvp TRBVP Exercise for Example 3 of the BVP tutorial.
  • trbvp TRBVP Exercise for Example 3 of the BVP tutorial.
  • View all files

Tutorial on solving BVPs with BVP4C

by

 

06 Aug 2003 (Updated )

Solving boundary value problems with BVP4C. Tutorial + Examples.

ex9bvp
function ex9bvp
%EX9BVP  Example 9 of the BVP tutorial.
%   This boundary value problem is the subject of Chapter 8 of 
%   C.C. Lin and L.A. Segel, Mathematics Applied to Deterministic
%   Problems in the Natural Sciences, SIAM, Philadelphia, 1988. 
%   The ODEs
%   
%      v' = (C - 1)/n
%      C' = (vC - min(x,1))/eta
%
%   are solved on the interval [0, lambda].  The boundary conditions 
%   are v(0) = 0, C(lambda) = 1, and continuity of v(x) and C(x) at 
%   x = 1.  Accordingly, this is a three-point BVP that must be 
%   reformulated for solution with the two-point BVP solver BVP4C.  
%   This reformulation involves introducing unknowns y_1(x) for v 
%   and y_2(x) for C on the interval 0 <= x <= 1 and unknowns y_3(x) 
%   for v and y_4(x) for C on 1 <= x <= lambda. A new independent 
%   variable is introduced for the second interval, tau = 
%   (x - 1)/(lambda - 1), so that it also ranges from 0 to 1. The 
%   differential equations for the four unknowns are then solved
%   on the interval [0, 1].  The continuity conditions on v and C
%   become boundary conditions on the new unknowns.  A plot of v(x)
%   and C(x) on [0, lambda] involves plotting the new unknowns over
%   the subintervals.
%
%   The quantity of most interest is the emergent osmolarity Os =
%   1/v(lambda).  The parameters are related to another parameter
%   kappa by eta = lambda^2/(n*kappa^2).  Lin and Segel develop an 
%   approximate solution for Os valid for "small" n.  Here the BVP is
%   solved for a range of kappa when lambda = 2 and n = 0.005.  The
%   computed Os is compared to the approximation of Lin and Segel.

% Copyright 2002, The MathWorks, Inc.

n = 5e-2;
lambda = 2;

options = [];   % place holder

sol = bvpinit(linspace(0,1,5),[1 1 1 1]);

fprintf(' kappa    computed Os  approximate Os \n')
for kappa = 2:5
  eta = lambda^2/(n*kappa^2);
  
  sol = bvp4c(@ex9ode,@ex9bc,sol,options,n,lambda,eta);
  
  K2 = lambda*sinh(kappa/lambda)/(kappa*cosh(kappa));
  approx = 1/(1 - K2);
  computed = 1/sol.y(3,end);
  fprintf('  %2i    %10.3f    %10.3f \n',kappa,computed,approx);
end

% v and C are computed separately on 0 <= x <= 1 and 1 <= x <= lambda.
% A change of independent variable is used for the second interval,
% which must then be undone to obtain the corresponding mesh.
x = [sol.x sol.x*(lambda-1)+1];
y = [sol.y(1:2,:) sol.y(3:4,:)];

figure
plot(x,y(1,:),x,y(2,:),'--')
legend('v(x)','C(x)')
title('A three-point BVP.')
xlabel(['\lambda = ',num2str(lambda),', \kappa = ',num2str(kappa),'.'])
ylabel('v and C')

% --------------------------------------------------------------------------

function dydx = ex9ode(x,y,n,lambda,eta)
%EX9ODE  ODE function for Example 9 of the BVP tutorial.
dydx = [ (y(2) - 1)/n
         (y(1)*y(2) - x)/eta 
         (lambda - 1)*(y(4) - 1)/n
         (lambda - 1)*(y(3)*y(4) - 1)/eta ];

% --------------------------------------------------------------------------

function res = ex9bc(ya,yb,n,lambda,eta)
%EX9BC  Boundary conditions for Example 9 of the BVP tutorial.
res = [ ya(1)
        yb(4) - 1
        yb(1) - ya(3)
        yb(2) - ya(4)];

Contact us