Code covered by the BSD License  

Highlights from
Nonrigid image registration with fractional differential equations

Nonrigid image registration with fractional differential equations

by

 

09 Nov 2012 (Updated )

Solves fractional vector Helmholtz equation in 2D and 3D for use in nonrigid image registration

fractionalHelmholtz2DSliding(varargin)
function UNew = fractionalHelmholtz2DSliding(varargin)
% fractionalHelmholtz2DSliding: computes solution to the fractional
% Helmoltz equation in 2 dimensions with sliding boundary conditions.
%
% The continuous version of the fractional diffusion equation is:
%
%   d/dt U(x,y,t) - L^alpha/2 {U(x,y,t)} = f(x,y,t),
%
% where L^alpha/2 is the spatial fractional Laplacian operator.  A forward 
% discretization of this equation in time yields:
%
%   (U(x,y,t+tau) - U(x,y,t))/tau - L^alpha/2 {U(x,y,t+tau)} = f(x,y,t).
%
% Simplifying yields:
%   
%   (I - tau * L^alpha/2) {U(x,y,t+tau)} = U(x,y,t) + tau*f(x,y,t),
%
% which is what we call the "fractional Helmholtz equation".
%
% This function is called in the following manner:
%
% UNew = fractionalHelmholtz2DSliding(F,U,alpha,tau);
%
% arguments:
%   F (3-D array) - F(:,:,1) and F(:,:,2) are the
%       components of the force vector field F at time t
%   U (3-D array) - U(:,:,1) and U(:,:,2) are the
%       components of the estimate of the vector field U at time t.
%       If U is not supplied, it is assumed to be a zero vector field.
%   alpha (scalar) - order of the fractional Laplacian.  
%       The default (alpha = 2) generates the standard Laplacian.
%   tau (scalar) - time step.  Default tau = 1.
%

% author: Nathan D. Cahill
% email: nathan.cahill@rit.edu
% date: 28 October 2012

% Based on 1-D fractional Helmholtz solvers written by Clarissa Garvey

% parse input arguments
[F,U,alpha,tau,nR,nC] = parseInputs(varargin{:});

% initialize UNew
UNew = zeros(nR,nC,2);

% get transforms of kernels for each dimension with Dirichlet and Neumann 
% boundary conditions
[kTrans.row.Dirichlet,kTrans.row.Neumann] = getKernels(nR,alpha,tau,1);
[kTrans.col.Dirichlet,kTrans.col.Neumann] = getKernels(nC,alpha,tau,2);

%%%%%%%%%%%%%%%%%%%%%%%%%
% first component of vector field

% Dirichlet boundary conditions along y (first) dimension
A = imag(fft(U(:,:,1) + tau*F(:,:,1), 2*(nR-1), 1));
A = A(1:nR,:);

% Neumann boundary conditions along x (second) dimension
B = real(fft(A, 2*(nC-1), 2));

% divide by transformed filter coefficients - partially vectorized
H = kTrans.row.Dirichlet*kTrans.col.Neumann;
C = B./H;

% inverse sine transform along y (first) dimension
B = imag(fft(C, 2*(nR-1), 1));
B = B(1:nR,:);

% inverse cosine transform along x (second) dimension
A = real(fft(B, 2*(nC-1), 2));

% write first component into UNew
UNew(:,:,1) = A(1:nR,1:nC);

%%%%%%%%%%%%%%%%%%%%%%%%%
% second component of vector field

% Dirichlet boundary conditions along x (second) dimension
A = imag(fft(U(:,:,2) + tau*F(:,:,2), 2*(nC-1), 2));
A = A(:,1:nC);

% Neumann boundary conditions along y (first) dimension
B = real(fft(A, 2*(nR-1), 1));

% divide by transformed filter coefficients - partially vectorized
H = kTrans.row.Neumann*kTrans.col.Dirichlet;
C = B./H;

% inverse sine transform along x (second) dimension
B = imag(fft(C, 2*(nC-1), 2));
B = B(:,1:nC);

% inverse cosine transform along y (first) dimension
A = real(fft(B, 2*(nR-1), 1));

% write second component into UNew
UNew(:,:,2) = A(1:nR,1:nC);

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [F,U,alpha,tau,nR,nC] = parseInputs(varargin)

% test number of inputs
narginchk(1,4);

% get / test first input
F = varargin{1};
[nR,nC,nComp] = size(F);
if (numel(F)~=(nR*nC*nComp)) || (nComp~=2)
    error([mfilename,':FWrongSize'],...
        'F must be a 3-D array with third dimension having two elements.');
end

% get / test second input
if nargin<2
    U = [];
else
    U = varargin{2};
end
if isempty(U)
    U = zeros(size(F)); % default
end
if ~isequal(size(U),size(F))
    error([mfilename,':UWrongSize'],...
        'U must be 3-D array having the same size as F.');
end

% get / test third input
if nargin<3
    alpha = [];
else
    alpha = varargin{3};
end
if isempty(alpha)
    alpha = 2; % default
end
if ~isscalar(alpha)
    error([mfilename,':alphaInvalid'],...
        'alpha must be a scalar.');
end

% get/test fourth input
if nargin<4
    tau = [];
else
    tau = varargin{4};
end
if isempty(tau)
    tau = 1; % default
end
if (~isscalar(tau)) || (tau<0)
    error([mfilename,':tauInvalid'],...
        'tau must be a positive scalar.');
end

end

function [D,N] = getKernels(numElements,alpha,tau,dim)

derivativeVector = helmholtzHelper(zeros(1,numElements),alpha/2,0);

% delete numElements+1 element
if numElements>1
    derivativeVector(numElements+1) = [];
end

% set up transform of vector for Neumann BC
N = fft(derivativeVector)/2 + tau;

% set up transform of vector for Dirichlet BC
D = N(1:numElements);

switch dim
    case 1
        D = D(:);
        N = N(:);
    case 2
        D = D(:).';
        N = N(:).';
end

end

Contact us