function [ bmk_swp_premium, par_rate ] = vol2par_swaption( curve, V, period )
% This function determines the matrix of swaption premiums
% and the corresponding ATM par rates. The structure of the output
% is identical to the Volatility surface matrix V, which is assumed
% to be 10y X 10y of Expiry X Maturity.
% It is assumed single curve discounting and 1,000 notional.
%
% input
% Curve : interest rate curve object
% V : volatility matrix
% Period : frequency of payments of the underlying swaps
%-------------------------------------------------------------------------------
% determine the equivalent premium of the ATM swaptions
%-------------------------------------------------------------------------------
F = curve.getDiscountFactors(datenum(year(curve.Settle)+(1:20)',month(curve.Settle),day(curve.Settle)));
[F1, F2]=meshgrid(F,F);
D=tril(F1-F2);
D1=zeros(10);
for i=1:10;
d=diag(D,-i);
D1(:,i)=d(1:end-(10-i));% Fwd factors
end
%D1=D1'; % make it Exp_X_Mat
bmk_swp_premium=1000*D1.*(2*normcdf(V/100.*sqrt(repmat((1:10)',1,10))/2)-1);% price of the bmk ATM swaptions
%-------------------------------------------------------------------------------
CFlowDates=cfdates(curve.Settle,addtodate(curve.Settle,20,'year'),period,curve.Basis,0)'; % the only scope of this cf is feeding the curve to RateSpec
%-------------------------------------------------------------------------------
% get the par rate for the fwd swap component of the ATM Vol Matrix
%-------------------------------------------------------------------------------
d=datenum(year(curve.Settle)+(1:10)',month(curve.Settle),day(curve.Settle));
par_rate=zeros(10);
for i=1:10,
[~, u2]=swapbyzero(curve.toRateSpec(CFlowDates),repmat([NaN 0],10,1),d(i),datenum(year(d(i))+(1:10)',month(d(i)),day(d(i))),[period period],curve.Basis,1000,repmat([1 0],10,1),0);
par_rate(i,:)=u2';
end
%-------------------------------------------------------------------------------
end