from
Wolf local image thresholding
by Jan Motl
Wolf's binarization performs local image thresholding.
|
| output=wolf(image, varargin) |

%WOLF local thresholding.
% BW = WOLF(IMAGE) performs local thresholding of a two-dimensional
% array IMAGE with Wolf's algorithm.
%
% BW = WOLF(IMAGE, [M N], THRESHOLD, PADDING) performs local
% thresholding with M-by-N neighbourhood (default is 3-by-3) and
% threshold THRESHOLD between 0 and 1 (default is 0.5).
% To deal with border pixels the image is padded with one of
% PADARRAY options (default is 'replicate').
%
% Example
% -------
% imshow(wolf(imread('eight.tif'), [250 250]));
%
% See also PADARRAY, RGB2GRAY.
% For method description see:
% http://dx.doi.org/10.1117/12.805827
% Contributed by Jan Motl (jan@motl.us)
% $Revision: 1.0 $ $Date: 2013/05/09 16:58:01 $
function output=wolf(image, varargin)
% Initialization
numvarargs = length(varargin); % only want 3 optional inputs at most
if numvarargs > 3
error('myfuns:somefun2Alt:TooManyInputs', ...
'Possible parameters are: (image, [m n], threshold, padding)');
end
optargs = {[3 3] 0.5 'replicate'}; % set defaults
optargs(1:numvarargs) = varargin; % use memorable variable names
[window, k, padding] = optargs{:};
if ndims(image) ~= 2
error('The input image must be a two-dimensional array.');
end
% Convert to double
image = double(image);
% Mean value
mean = averagefilter(image, window, padding);
% Standard deviation
meanSquare = averagefilter(image.^2, window, padding);
deviation = (meanSquare - mean.^2).^0.5;
% Wolf
R = max(deviation(:));
M = min(image(:));
threshold = bsxfun(@plus, (1-k)*mean+k*deviation./R.*(mean-M), k*M);
output = (image > threshold);
|
|
Contact us