# Get from

### Highlights from alexkreimer/rect_pollefeys

• F_transfer_l(H,l1)
• P_from_KRt(K,R,t)
FULL CALIBRATION from camera intrinsics (K) and rigid transformation (R,t)
• e2h(e)
Cartesian space is split into 9 parts as in the image below. This function
• get_pixel(im,p)
• h2e(h)
• im_pixel_points(l,e,dim)
line equations of image boundaries
• im_polar_cone(e,dim)
Consider polar coordinate system with origin at the epipole e; also
• im_project(im,ps,rr,dim)
• l_from_theta_p(theta,p)
• numcols(m)
• numrows(m)
• plot_line_in_image(l1)
read camera parameters and convert into 3 by 4 matrix
• rect_pollefeys(F,i1,i2)
function [i1_rect,i2_rect] = rect_pollefeys(i1,i2,F)
• vgg_F_from_P(P, P2)
F = vgg_F_from_P(P) Compute fundamental matrix from two camera matrices.
• xprodmat(a)
Matrix representation of a cross product
• rectify_sequence.m
• View all files

# alexkreimer/rect_pollefeys

### Alex Kreimer (view profile)

13 Jun 2013 (Updated )

M. Pollefeys, R. Koch and L. Van Gool, A simple and efficient rectification method for general motio

All Files
```alexkreimer-rect_pollefeys-01eef9d/e2h.m
alexkreimer-rect_pollefeys-01eef9d/F_transfer_l.m
alexkreimer-rect_pollefeys-01eef9d/get_pixel.m
alexkreimer-rect_pollefeys-01eef9d/h2e.m
alexkreimer-rect_pollefeys-01eef9d/im_pixel_points.m
alexkreimer-rect_pollefeys-01eef9d/im_polar_cone.m
alexkreimer-rect_pollefeys-01eef9d/im_project.m
alexkreimer-rect_pollefeys-01eef9d/l_from_theta_p.m
alexkreimer-rect_pollefeys-01eef9d/numcols.m
alexkreimer-rect_pollefeys-01eef9d/numrows.m
alexkreimer-rect_pollefeys-01eef9d/plot_line_in_image.m
alexkreimer-rect_pollefeys-01eef9d/P_from_KRt.m