Multiclass SVM classifier
The provided MATLAB functions can be used to train and perform multiclass classification on a data set using a dendrogram-based support vector machine (D-SVM).
The two main functions are:
Train_DSVM: This is the function to be used for training
Classify_DSVM: This is the function to be used for D-SVM classification
Example: Training and classification using fisheriris data
load fisheriris
train_label={zeros(30,1),ones(30,1),2*ones(30,1)};
train_cell={meas(1:30,:),meas(51:80,:),meas(101:130,:)};
[svmstruct] = Train_DSVM(train_cell,train_label);
label=[0 1 2];
test_mat=[meas(31:40,:);meas(81:90,:);meas(131:140,:)];
[Class_test] = Classify_DSVM(test_mat,label,svmstruct);
labels=[zeros(1,10),ones(1,10),2*ones(1,10)];
[Cmat,DA]= confusion_matrix(Class_test,labels,{'A','B','C'});
Cite As
Tarek Lajnef (2026). Multiclass SVM classifier (https://www.mathworks.com/matlabcentral/fileexchange/48632-multiclass-svm-classifier), MATLAB Central File Exchange. Retrieved .
MATLAB Release Compatibility
Platform Compatibility
Windows macOS LinuxCategories
Tags
Discover Live Editor
Create scripts with code, output, and formatted text in a single executable document.
DSVM/
| Version | Published | Release Notes | |
|---|---|---|---|
| 1.7.0.0 | adding level variable; variable defined in train_dsvm function and used in classify_dsvm |
||
| 1.6.0.0 | fiing some bugs |
||
| 1.5.0.0 | Add confusion_matrix, |
||
| 1.4.0.0 | Title + Tags |
||
| 1.3.0.0 | Tag |
||
| 1.2.0.0 | Title |
||
| 1.1.0.0 | toolbox |
||
| 1.0.0.0 |
|
