This is machine translation

Translated by Microsoft
Mouseover text to see original. Click the button below to return to the English version of the page.

Note: This page has been translated by MathWorks. Click here to see
To view all translated materials including this page, select Country from the country navigator on the bottom of this page.

Estimate BER for Hard and Soft Decision Viterbi Decoding

Estimate bit error rate (BER) performance for hard-decision and soft-decision Viterbi decoders in AWGN. Compare the performance to that of an uncoded 64-QAM link.

Set the simulation parameters.

clear; close all
rng default
M = 64;                 % Modulation order
k = log2(M);            % Bits per symbol
EbNoVec = (4:10)';       % Eb/No values (dB)
numSymPerFrame = 1000;   % Number of QAM symbols per frame

Initialize the BER results vectors.

berEstSoft = zeros(size(EbNoVec)); 
berEstHard = zeros(size(EbNoVec));

Set the trellis structure and traceback length for a rate 1/2, constraint length 7, convolutional code.

trellis = poly2trellis(7,[171 133]);
tbl = 32;
rate = 1/2;

The main processing loops performs these steps:

  • Generate binary data.

  • Convolutionally encode the data.

  • Apply QAM modulation to the data symbols. Specify unit average power for the transmitted signal.

  • Pass the modulated signal through an AWGN channel.

  • Demodulate the received signal using hard decision and approximate LLR methods. Specify unit average power for the received signal.

  • Viterbi decode the signals using hard and unquantized methods.

  • Calculate the number of bit errors.

The while loop continues to process data until either 100 errors are encountered or 1e7 bits are transmitted.

for n = 1:length(EbNoVec)
    % Convert Eb/No to SNR
    snrdB = EbNoVec(n) + 10*log10(k*rate);
    % Noise variance calculation for unity average signal power.
    noiseVar = 10.^(-snrdB/10);
    % Reset the error and bit counters
    [numErrsSoft,numErrsHard,numBits] = deal(0);
    
    while numErrsSoft < 100 && numBits < 1e7
        % Generate binary data and convert to symbols
        dataIn = randi([0 1],numSymPerFrame*k,1);
        
        % Convolutionally encode the data
        dataEnc = convenc(dataIn,trellis);
        
        % QAM modulate
        txSig = qammod(dataEnc,M,'InputType','bit','UnitAveragePower',true);
        
        % Pass through AWGN channel
        rxSig = awgn(txSig,snrdB,'measured');
        
        % Demodulate the noisy signal using hard decision (bit) and
        % soft decision (approximate LLR) approaches.
        rxDataHard = qamdemod(rxSig,M,'OutputType','bit','UnitAveragePower',true);
        rxDataSoft = qamdemod(rxSig,M,'OutputType','approxllr', ...
            'UnitAveragePower',true,'NoiseVariance',noiseVar);
        
        % Viterbi decode the demodulated data
        dataHard = vitdec(rxDataHard,trellis,tbl,'cont','hard');
        dataSoft = vitdec(rxDataSoft,trellis,tbl,'cont','unquant');
        
        % Calculate the number of bit errors in the frame. Adjust for the
        % decoding delay, which is equal to the traceback depth.
        numErrsInFrameHard = biterr(dataIn(1:end-tbl),dataHard(tbl+1:end));
        numErrsInFrameSoft = biterr(dataIn(1:end-tbl),dataSoft(tbl+1:end));
        
        % Increment the error and bit counters
        numErrsHard = numErrsHard + numErrsInFrameHard;
        numErrsSoft = numErrsSoft + numErrsInFrameSoft;
        numBits = numBits + numSymPerFrame*k;

    end
    
    % Estimate the BER for both methods
    berEstSoft(n) = numErrsSoft/numBits;
    berEstHard(n) = numErrsHard/numBits;
end

Plot the estimated hard and soft BER data. Plot the theoretical performance for an uncoded 64-QAM channel.

semilogy(EbNoVec,[berEstSoft berEstHard],'-*')
hold on
semilogy(EbNoVec,berawgn(EbNoVec,'qam',M))
legend('Soft','Hard','Uncoded','location','best')
grid
xlabel('Eb/No (dB)')
ylabel('Bit Error Rate')

As expected, the soft decision decoding produces the best results.