This is machine translation

Translated by Microsoft
Mouseover text to see original. Click the button below to return to the English version of the page.

Note: This page has been translated by MathWorks. Click here to see
To view all translated materials including this page, select Country from the country navigator on the bottom of this page.


General declining-balance depreciation schedule


Depreciation = depgendb(Cost,Salvage,Life,Factor)



Cost of the asset.


Estimated salvage value of the asset.


Number of periods over which the asset is depreciated.


Depreciation factor. Factor = 2 uses the double-declining-balance method.


Depreciation = depgendb(Cost,Salvage,Life,Factor) calculates the declining-balance depreciation for each period.


collapse all

A car is purchased for $10,000 and is to be depreciated over five years. The estimated salvage value is $1000. Using the double-declining-balance method, the function calculates the depreciation for each year and returns the remaining depreciable value at the end of the life of the car.

Define the depreciation.

Life = 5;
Salvage = 0;
Cost = 10000;

Use depgendb to calculate the depreciation.

Depreciation = depgendb(10000, 1000, 5, 2)
Depreciation = 1×5
103 ×

    4.0000    2.4000    1.4400    0.8640    0.2960

The large value returned at the final year is the sum of the depreciation over the life time and is equal to the difference between the Cost and Salvage. The value of the asset in the final year is computed as (Cost - Salvage) = Sum_Depreciation_Upto_Final_Year.

Introduced before R2006a