thetaregion

Filled wedge in polar coordinates

Since R2024a

Syntax

``thetaregion(theta1,theta2)``
``thetaregion(T)``
``thetaregion(___,Name=Value)``
``thetaregion(pax,___)``
``pr = thetaregion(___)``

Description

example

````thetaregion(theta1,theta2)` creates a filled wedge between the two specified angles in the current (polar) axes. To create one filled wedge, specify `theta1` and `theta2` as scalars. To create multiple filled wedges, specify `theta1` and `theta2` as vectors of the same length.```

example

````thetaregion(T)` specifies multiple wedges as a matrix. To create n wedges, specify `T` as a 2-by-n or n-by-2 matrix containing the bounding angles for each wedge.```

example

````thetaregion(___,Name=Value)` specifies properties for the filled wedge using one or more name-value arguments. If you create multiple wedges, the property values apply to all of the wedges. Specify the name-value arguments after all other inputs. For example, create a yellow wedge using `thetaregion(0,pi/2,FaceColor="yellow")`. For a list of properties, see PolarRegion Properties.```

example

````thetaregion(pax,___)` specifies the target polar axes for the filled wedge. Specify `pax` as the first argument in any of the previous syntaxes.```

example

````pr = thetaregion(___)` returns one or more `PolarRegion` objects. Use `pr` to set properties of the filled wedges after creating them. For a list of properties, see PolarRegion Properties.```

Examples

collapse all

Create a polar plot. Then create a filled wedge between the angles `0` and `pi/2`.

```% Create polar plot theta = 0:0.01:2*pi; rho = 2*sin(2*theta).*cos(2*theta); polarplot(theta,rho,LineWidth=1.5) % Create wedge theta1 = 0; theta2 = pi/2; thetaregion(theta1,theta2)```

Change the theta-axis units to radians by setting the `ThetaAxisUnits` property.

```pax = gca; pax.ThetaAxisUnits = "radians";```

Create three filled wedges by specifying the theta values as three-element vectors.

```theta1 = [pi/3 7*pi/6 10*pi/6]; theta2 = [pi/2 4*pi/3 11*pi/6]; thetaregion(theta1,theta2)```

Alternatively, specify one 2-by-3 matrix of theta values.

```figure T = [pi/3 7*pi/6 10*pi/6; pi/2 4*pi/3 11*pi/6]; thetaregion(T)```

You can specify `PolarRegion` properties, such as face color and boundary line width and color, by specifying one or more name-value arguments when you call `thetaregion`. Alternatively, you can set properties of the `PolarRegion` object after creating it.

For example, create two green filled wedges: one in the first (upper-right) quadrant and the other in the third (lower-left) quadrant. Specify an output argument to store the `PolarRegion` objects so that you can modify them later.

```theta1 = [0 pi]; theta2 = [pi/2 3*pi/2]; tr = thetaregion(theta1,theta2,FaceColor="g");```

Change the color of the wedge in the third quadrant to a shade of purple by setting the FaceColor property to a hexadecimal color code. Then display thick boundary lines on the wedge in the first quadrant by setting the `EdgeColor` property to a value other than `"none"` and `LineWidth` property to `1.5` points.

```% Set color of wedge in third quadrant tr(2).FaceColor = "#5500FF"; % Set boundary color and line thickness in first quadrant tr(1).EdgeColor = "b"; tr(1).LineWidth = 1.5;```

Plot a blue and a red cardioid.

```theta = linspace(0,2*pi); rho1 = 1-cos(theta); rho2 = 1-cos(theta+pi); % Blue cardioid cardioid1 = polarplot(theta,rho1,LineWidth=1.5); hold on % Red cardioid cardioid2 = polarplot(theta,rho2,LineWidth=1.5);```

Create wedges that highlight specific regions of each cardioid.

```theta1 = 5*pi/6; theta2 = 7*pi/6; wedge1 = thetaregion(theta1,theta2); theta3 = 11*pi/6; theta4 = 13*pi/6; wedge2 = thetaregion(theta3,theta4);```

Match each wedge color to the corresponding cardioid by setting the `SeriesIndex` property of the wedge to the `SeriesIndex` property of the cardioid.

```wedge1.SeriesIndex = cardioid1.SeriesIndex; wedge2.SeriesIndex = cardioid2.SeriesIndex;```

To move a wedge on top of a plot, set the `Layer` property of the `PolarRegion` object to `"top"`. For example, plot a polar rose and add a filled wedge. When you create the wedge, specify a custom face color and a transparency value so that you can see that the rose is on top of the wedge.

```% Plot polar rose theta = 0:0.01:2*pi; rho = sin(2*theta).*cos(2*theta); polarplot(theta,rho,LineWidth=1.5) % Add filled wedge theta1 = 0; theta2 = pi/4; tr = thetaregion(theta1,theta2,FaceColor=[0.8 0.8 0.8],FaceAlpha=0.7);```

Move the filled wedge on top of the rose by setting the `Layer` property to `"top"`.

`tr.Layer = "top";`

To create filled wedges in different polar axes within the same figure, create a tiled chart layout. In this case, create two axes that each contain a filled wedge.

Use the `tiledlayout` function to create a 1-by-2 tiled chart layout `t`. Use the `polaraxes` function to create each `PolarAxes` object. By default, both objects occupy the first tile. Move the second `PolarAxes` object to the second tile by setting the `Layout.Tile` property.

```t = tiledlayout(1,2); pax1 = polaraxes(t); pax2 = polaraxes(t); pax2.Layout.Tile = 2;```

Create a red wedge in the first polar axes, and create a green wedge in the second polar axes. Specify the `PolarAxes` object that you want to plot into as the first argument when you call `thetaregion`.

```theta1 = 0; theta2 = pi/4; thetaregion(pax1,theta1,theta2,FaceColor="r") thetaregion(pax2,theta1,theta2,FaceColor="g")```

Input Arguments

collapse all

Bounding angles (in radians), specified as a pair of scalars or a pair of vectors. To create one filled wedge, specify `theta1` and `theta2` as scalars. To create multiple filled wedges, specify vectors of equal length. You can specify the angles in any order. Thus, `thetaregion(0,pi/2)` and `thetaregion(pi/2,0)` produce the same result.

To create a circle that spans all theta values, specify one of the angles as `Inf`.

If you specify an angle as a `NaN` value, no region appears for that angle.

Example: `thetaregion(pi/4,pi/2)` creates a filled wedge `theta=pi/4` to `theta=pi/2`.

Example: `thetaregion([0 pi/4],[pi/6 pi/2])` creates two filled wedges: one from `theta=0` to `theta=pi/6` and the other from `theta=pi/4` to `theta=pi/2`.

Data Types: `single` | `double`

Bounding angles for multiple wedges, specified as a 2-by-n or n-by-2 matrix, where n is the number of wedges. If you specify a 2-by-2 matrix, each column of the matrix corresponds to a wedge.

To create a circle that spans all theta values, specify one of the angles as `Inf`.

If any angles are `NaN` values, no region appears for those angles.

Example: `thetaregion([0 pi/4; pi/6 pi/2])` creates two filled wedges: one from `theta=0` to `theta=pi/6`, and the other from `theta=pi/4` to `theta=pi/2`.

Data Types: `single` | `double`

Target polar axes for the filled wedge, specified as a `PolarAxes` object. Use this argument if you want to create the filled wedge in a specific `PolarAxes` object instead of the current axes.

Name-Value Arguments

Specify optional pairs of arguments as `Name1=Value1,...,NameN=ValueN`, where `Name` is the argument name and `Value` is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Example: `thetaregion(0,pi/2,FaceColor="yellow")` creates a yellow filled wedge.

Note

The properties listed here are only a subset. For a complete list, see PolarRegion Properties.

Fill color, specified as an RGB triplet, a hexadecimal color code, or a color name.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of the red, green, and blue components of the color. The intensities must be in the range `[0,1]`, for example, ```[0.4 0.6 0.7]```.

• A hexadecimal color code is a string scalar or character vector that starts with a hash symbol (`#`) followed by three or six hexadecimal digits, which can range from `0` to `F`. The values are not case sensitive. Therefore, the color codes `"#FF8800"`, `"#ff8800"`, `"#F80"`, and `"#f80"` are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options, the equivalent RGB triplets, and hexadecimal color codes.

Color NameShort NameRGB TripletHexadecimal Color CodeAppearance
`"red"``"r"``[1 0 0]``"#FF0000"`

`"green"``"g"``[0 1 0]``"#00FF00"`

`"blue"``"b"``[0 0 1]``"#0000FF"`

`"cyan"` `"c"``[0 1 1]``"#00FFFF"`

`"magenta"``"m"``[1 0 1]``"#FF00FF"`

`"yellow"``"y"``[1 1 0]``"#FFFF00"`

`"black"``"k"``[0 0 0]``"#000000"`

`"white"``"w"``[1 1 1]``"#FFFFFF"`

`"none"`Not applicableNot applicableNot applicableNo color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB® uses in many types of plots.

`[0 0.4470 0.7410]``"#0072BD"`

`[0.8500 0.3250 0.0980]``"#D95319"`

`[0.9290 0.6940 0.1250]``"#EDB120"`

`[0.4940 0.1840 0.5560]``"#7E2F8E"`

`[0.4660 0.6740 0.1880]``"#77AC30"`

`[0.3010 0.7450 0.9330]``"#4DBEEE"`

`[0.6350 0.0780 0.1840]``"#A2142F"`

Boundary line color, specified as an RGB triplet, a hexadecimal color code, or a color name.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of the red, green, and blue components of the color. The intensities must be in the range `[0,1]`, for example, ```[0.4 0.6 0.7]```.

• A hexadecimal color code is a string scalar or character vector that starts with a hash symbol (`#`) followed by three or six hexadecimal digits, which can range from `0` to `F`. The values are not case sensitive. Therefore, the color codes `"#FF8800"`, `"#ff8800"`, `"#F80"`, and `"#f80"` are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options, the equivalent RGB triplets, and hexadecimal color codes.

Color NameShort NameRGB TripletHexadecimal Color CodeAppearance
`"red"``"r"``[1 0 0]``"#FF0000"`

`"green"``"g"``[0 1 0]``"#00FF00"`

`"blue"``"b"``[0 0 1]``"#0000FF"`

`"cyan"` `"c"``[0 1 1]``"#00FFFF"`

`"magenta"``"m"``[1 0 1]``"#FF00FF"`

`"yellow"``"y"``[1 1 0]``"#FFFF00"`

`"black"``"k"``[0 0 0]``"#000000"`

`"white"``"w"``[1 1 1]``"#FFFFFF"`

`"none"`Not applicableNot applicableNot applicableNo color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many types of plots.

`[0 0.4470 0.7410]``"#0072BD"`

`[0.8500 0.3250 0.0980]``"#D95319"`

`[0.9290 0.6940 0.1250]``"#EDB120"`

`[0.4940 0.1840 0.5560]``"#7E2F8E"`

`[0.4660 0.6740 0.1880]``"#77AC30"`

`[0.3010 0.7450 0.9330]``"#4DBEEE"`

`[0.6350 0.0780 0.1840]``"#A2142F"`

Fill color transparency, specified as a scalar in the range `[0,1]`. A value of `1` is opaque and `0` is completely transparent. Values between `0` and `1` are partially transparent.

Boundary line style, specified as one of the options listed in this table.

Line StyleDescriptionResulting Line
`"-"`Solid line

`"--"`Dashed line

`":"`Dotted line

`"-."`Dash-dotted line

`"none"`No lineNo line

Version History

Introduced in R2024a