How to adapt the output size of a given feature map in the Deep Learning Toolbox by using the "pool" operation?
4 views (last 30 days)
Show older comments
cui,xingxing
on 26 Oct 2021
Answered: KaSyow Riyuu
on 15 Apr 2022
I understand that there are currently "averagePooling2dLayer, maxPooling2dLayer, globalAveragePooling2dLayer, globalMaxPooling2dLayer" and so on for the "pool" operation. globalMaxPooling2dLayer", "maxpool" and other direct call functions, but nothing like pytorch's "adaptive_max_pool2d". function that can directly specify the size of the output feature map for a pool operation?
The following simple example is pytorch code, how can matlab achieve the same purpose?
input = torch.rand(8,3,224,224) # input tensor, NCHW
outSize = (20,20) # specify output tensor size, H_out*W_out
output = F.adaptive_max_pool2d(input,outSize) # adaptive output
print(output.shape) # result--> torch.Size([8, 3, 20, 20])
0 Comments
Accepted Answer
KaSyow Riyuu
on 15 Apr 2022
Stride = ( InputSize / OutputSize )
KernelSize = InputSize - ( OutputSize - 1) * Stride
Padding = 0
you can do adaptivepool like this
function Output = AdaptiveMaxPool(Input,OuputSize)
InputSize = size(Input)
Stride = floor( InputSize ./ OutputSize ) ;
KernelSize = InputSize - ( OutputSize -1) .* Stride ;
Output = maxpool(Input , KernelSize, "Stride", Stide) ;
end
0 Comments
More Answers (0)
See Also
Categories
Find more on Build Deep Neural Networks in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!