Isothermal boundary surface in FEM

10 views (last 30 days)
Eddy
Eddy on 29 Feb 2024
Edited: Eddy on 29 Feb 2024
Hi
I am trying to find the surface temperature of an underground cable. The cable has a conductor and a insulation. The conductor area is 630 mm2 and has losses of 53 W/m. Since Matlab uses W/m3 to define the internal heat source, I used the folllowing line to define the internal heat generated.
internalHeatSource(thermalmodelS, 53/630e-6,'Face',[2,4,6])
The thermal properties of the cable and the surrounding is defined as follows.
thermalProperties(thermalmodelS,"ThermalConductivity",1/1.2,"Face",1); % Soil
thermalProperties(thermalmodelS,"ThermalConductivity",398,"Face",[2,4,6]); % Conductor
thermalProperties(thermalmodelS,"ThermalConductivity",0.285,"Face",[3,5,7]); % Insulation
The soil is supposed to be at temperature of 20 deg.C. Since the cable is closer to the top edge (edge 4), I defined a constant temperature along the 3 other edges.
thermalBC(thermalmodelS,"Edge",[1,2,3],"Temperature",20);
Now, if I want to consider an isothermal surface at edge 4, what should I do?
Trial 1
Keep edge 4 also at 20 degrees C, but the results I expected were not obtained. (5 degree difference)
Trial 2
Keep edge 4 at 0 heat flux, but the results I expected were not obtained. (8.2 degree difference)
thermalBC(thermalmodelS,"Edge",4,"HeatFlux",0);
Trial 3
Define ambient temperature to be same as soil temperature at edge 4 and define a heat transfer coefficient of 0
thermalBC(thermalmodelS,"Edge",4, "ConvectionCoefficient",0,"AmbientTemperature",20);
This also yielded around 6 degree temperature difference.
Where am I going wrong? Or is none of the above methods valid.
Thanks in advance.

Answers (0)

Tags

Products


Release

R2023a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!