MATLAB Answers


clustering, matlab, nominal data

Asked by Radoslav Vandzura on 14 Jan 2016
Latest activity Commented on by Tom Lane
on 30 Jan 2016
Hello All. I need an advice. I need recommend method of clustering which is suitable for nominal data in Matlab. Could you help me, please? I appreciate every idea. Thank you in advance.


Sign in to comment.

3 Answers

Answer by Walter Roberson
on 15 Jan 2016
 Accepted Answer


Sign in to comment.

Answer by Image Analyst
on 15 Jan 2016

Try the Classification Learner app on the Apps tab.

  1 Comment

Tom Lane
on 16 Jan 2016
This could work as a post-processing step to assign new data to classes found from the original data. But classificationLearner would require that you know the clusters (groups) for the original data.

Sign in to comment.

Answer by Tom Lane
on 16 Jan 2016

For hierarchical clustering, consider using Hamming distance. Here's an example that isn't realistic but that illustrates what to do:
x=randi(3,100,4); % noisy coordinates
x(1:50,5:6) = randi(2,50,2); % try to make 1st 50 points closer
x(51:100,5:6) = 2+randi(2,50,2); % next 50 points different
z = linkage(x,'ave','hamming'); % try average linkage clustering
dendrogram(z,100) % show dendrogram with all points


But I have categorical data and I need to do clustering....My data consist of names of operating system (UNIX, WINDOWS,...), type of virtualisation (virtual system, virtualization host,...)... Can I change these data to number? For example, UNIX-1, WINDOWS-2...??????
I don´t know what do you mean...:( IS the Classification Learner app for Classification not for clustering, isn´t it?
Tom Lane
on 30 Jan 2016
You are right that the clustering functions operate on matrices so you would need to convert your data to numbers. The grp2idx function could be helpful. And yes, the Classification Learner app is aimed at classifying data into known groups. Here is a simple example where you can see the Hamming distance between data represented by a three-category variable and a two-category variable.
>> x = [1 1;2 1;3 1;1 2;2 2;2 3];
>> squareform(pdist(x,'hamming'))
ans =
0 0.5000 0.5000 0.5000 1.0000 1.0000
0.5000 0 0.5000 1.0000 0.5000 0.5000
0.5000 0.5000 0 1.0000 1.0000 1.0000
0.5000 1.0000 1.0000 0 0.5000 1.0000
1.0000 0.5000 1.0000 0.5000 0 0.5000
1.0000 0.5000 1.0000 1.0000 0.5000 0

Sign in to comment.