How to plot an Ellipse
365 views (last 30 days)
Show older comments
I want to plot an Ellipse. I have the verticles for the major axis: d1(0,0.8736) d2(85.8024,1.2157) (The coordinates are taken from another part of code so the ellipse must be on the first quadrant of the x-y axis) I also want to be able to change the eccentricity of the ellipse.
1 Comment
muhammad arfan
on 18 Jun 2019
dears!!!
i have asigned to write a matlab code for 8 point to fit it in ellipse by using least square method..
i am new in using matlab and try my best but my points are not fit on ellipse. i use annealing method so that i have satisfied my teacher by my work. please chk my work and help me.
thanks
arfan khan
clc;
clear all;
close all;
r1 = rand(1);
r2 = [1+rand(1)]; % r2>r1
x0 = 0;
y0 = 0;
N = 8;
n= 100;
x1 = 1;
x2 = 2;
y1 = 1;
y2 = 2;
for i = 1:n
x = x1 +(x2-x1).*rand(N,1);
y = y1 +(y2-y1).*rand(N,1);
f = ((((x./r1).^2) +(y./r2).^2)-1).^2;
[m,l] = min(f);
z =.001* exp(10*(1-i/n));
v = z/2;
% disp('v');
% disp(v)
x1 = x(l)*v;
x2 = x(l)*v;
% disp('x1')
% disp(x1)
% disp('x2')
% disp(x2)
% ay = v./y(l);
% by = v./y(l);
% disp(v);
%
% % hold on;
disp('f');
disp(f);
end
% plot(f,'or')
plot(x,y, '*b');
x=((x(i)-x0)*cos(z)) - ((y(i)-y0)*sin(z))
y=(x(i)-x0)*sin(z)-(y(i)-y0)*cos(z)
xa(i)=rand(1)
x(i)= a+(b-a)*rand(1);
y(i)= rand(1);
for
m(i) = ((((x).^2)/a^2) + (((y).^2)/b^2)-1).^2
end
hold on;
Accepted Answer
Roger Stafford
on 8 Sep 2013
Edited: Cris LaPierre
on 5 Apr 2019
Let (x1,y1) and (x2,y2) be the coordinates of the two vertices of the ellipse's major axis, and let e be its eccentricity.
a = 1/2*sqrt((x2-x1)^2+(y2-y1)^2);
b = a*sqrt(1-e^2);
t = linspace(0,2*pi);
X = a*cos(t);
Y = b*sin(t);
w = atan2(y2-y1,x2-x1);
x = (x1+x2)/2 + X*cos(w) - Y*sin(w);
y = (y1+y2)/2 + X*sin(w) + Y*cos(w);
plot(x,y,'y-')
axis equal
11 Comments
Image Analyst
on 7 Jul 2020
Here's a full demo:
% Define parameters.
fontSize = 15;
x1 = 1;
x2 = 20;
y1 = 2;
y2 = 8;
eccentricity = 0.85;
numPoints = 300; % Less for a coarser ellipse, more for a finer resolution.
% Make equations:
a = (1/2) * sqrt((x2 - x1) ^ 2 + (y2 - y1) ^ 2);
b = a * sqrt(1-eccentricity^2);
t = linspace(0, 2 * pi, numPoints); % Absolute angle parameter
X = a * cos(t);
Y = b * sin(t);
% Compute angles relative to (x1, y1).
angles = atan2(y2 - y1, x2 - x1);
x = (x1 + x2) / 2 + X * cos(angles) - Y * sin(angles);
y = (y1 + y2) / 2 + X * sin(angles) + Y * cos(angles);
% Plot the ellipse as a blue curve.
subplot(2, 1, 1);
plot(x,y,'b-', 'LineWidth', 2); % Plot ellipse
grid on;
axis equal
% Plot the two vertices with a red spot:
hold on;
plot(x1, y1, 'r.', 'MarkerSize', 25);
plot(x2, y2, 'r.', 'MarkerSize', 25);
caption = sprintf('Ellipse with vertices at (%.1f, %.1f) and (%.1f, %.1f)', x1, y1, x2, y2);
title(caption, 'FontSize', fontSize);
xlabel('x', 'FontSize', fontSize);
ylabel('y', 'FontSize', fontSize);
% Plot the x and y. x in blue and y in red.
subplot(2, 1, 2);
plot(t, x, 'b-', 'LineWidth', 2);
grid on;
hold on;
plot(t, y, 'r-', 'LineWidth', 2);
legend('x', 'y', 'Location', 'north');
title('x and y vs. t', 'FontSize', fontSize);
xlabel('t', 'FontSize', fontSize);
ylabel('x or y', 'FontSize', fontSize);
% Set up figure
g = gcf;
g.WindowState = 'maximized';
g.NumberTitle = 'off';
g.Name = 'Ellipse Demo by Roger Stafford and Image Analyst'

Maite Osaba
on 25 Aug 2022
Edited: Maite Osaba
on 25 Aug 2022
@Image Analyst I found this implementation really useful! Thanks! Do you think there is a way to plot this so the ellipse is filled with color?
More Answers (5)
Azzi Abdelmalek
on 8 Sep 2013
Edited: Azzi Abdelmalek
on 12 Jun 2015
a=5; % horizontal radius
b=10; % vertical radius
x0=0; % x0,y0 ellipse centre coordinates
y0=0;
t=-pi:0.01:pi;
x=x0+a*cos(t);
y=y0+b*sin(t);
plot(x,y)
3 Comments
Sandy M
on 27 Jul 2019
Hi, I do my ellipse graph
A=10;
B=7.5;
X=-10:.1:10;
Y=(7.5/10)*(1-x^2)^(1/2)
z=-(7.5/10)*(1-x^2)^(1/2)
Plot(x,y,x,z)
Its ok but i need it in cm units cause if i change properties of figure and paper to cm i get deference’s about 3 or 5 mm How can I justify the unit
Kommi
on 24 Nov 2022
For ellipse
>> clc
clear all
%length of major axis
a = input('please enter the length of major axis: ');
b = input('please enter the length of minor axis: ');
x1 = input('please input the x coordinate of the ellipse: ');
y1 = input('please enter the y coordinate of the ellipse: ');
t = -pi:0.01:pi;
x = x1+(a*cos(t));
y = y1+(b*sin(t));
plot(x,y);
0 Comments
Kate
on 24 Feb 2014
how would you plot a ellipse with only knowing some co-ordinates on the curve and not knowing the y radius and x radius?
4 Comments
Devi Satya Cheerla
on 12 Jun 2015
Edited: Walter Roberson
on 26 Aug 2022
in the equation of ellipse X2/a2 + Y2/b2 = 1. knowing the points on ellipse, can find a and b. then enter the code below to mathematically compute y and to plot x,y.
code:
x=(0:.01:a); # x value is from 0 to 'a' and discrete with 0.01 scale#
i=1:(a*100+1); # i is to calculate y at every discrete value. it should be for 1 i.e first x value to the last x value.. as it does not have a zero, add 1#
clear y # to clear any previous y value#
for i=1:(a*100+1)
y(i)=(b^2*(1-(x(i)^2)/a^2))^.5; #from the ellipse equation y=sqrt(b2(1-(x2/a2))#
end
plot(x,y)
hold on
plot(x,-y)
hold on
plot(-x,y)
hold on
plot(-x,-y)
Sandy M
on 27 Jul 2019
hi why u product the nmber with 100?
and, if i want the graph with cm units, what i do? cause i change garaph and paper properties but i still defreces about 4 mm when i prented it
Omar Maaroof
on 13 May 2019
you can use
Ellipse2d
1 Comment
Walter Roberson
on 13 May 2019
MATLAB does not offer Ellipse2d plotting directly. Instead, the Symbolic Toolbox's engine, MuPAD, offers plot::Ellipse2d https://www.mathworks.com/help/symbolic/mupad_ref/plot-ellipse2d.html which can only be used from within a MuPAD notebook . R2018b was intended to be the last release that included the MuPAD notebook, but it was carried on to R2019a as well.
Matt J
on 24 Nov 2022
Edited: Matt J
on 24 Nov 2022
Using this FEX download,
[x1,y1,x2,y2, e]=deal(1,2,20,8 ,0.85); %hypothetical input
a = 1/2*sqrt((x2-x1)^2+(y2-y1)^2);
b = a*sqrt(1-e^2);
center=[x1+x2,y1+y2]/2;
theta=atan2d(y2-y1,x2-x1); %rotation angle
obj=ellipticalFit.groundtruth([], center,[a,b], theta);
plot(obj); hold on;
plot([x1,x2],[y1,y2],'xk'); hold off;
axis padded

0 Comments
See Also
Categories
Find more on Number Theory in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!