A definite integral had a minimum and maximum limit. When you solve this type of problem you must use both quad and the trapz functions (easy), returning the absolute value of their difference which should be zero.
Solution Stats
Problem Comments
3 Comments
Solution Comments
Show comments
Loading...
Problem Recent Solvers61
Suggested Problems
-
Find state names that start with the letter N
1433 Solvers
-
First non-zero element in each column
942 Solvers
-
Similar Triangles - find the height of the tree
466 Solvers
-
Create a Multiplication table matrix...
690 Solvers
-
736 Solvers
More from this Author16
Problem Tags
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!
Bruce, please check the answers to your test suite. Granted, it has been a while since I took calculus in college, but I'm pretty sure the answers aren't all zero. :-)
Never mind...just noticed you were looking for the error differences, and not the actual values. It's been a while since I took a Reading Comprehension class as well...
This is an "honor system" test suite. For the last case, quad('2*x',0,2) gives 3.9999999999999996, while trapz([0:1/n:2],[0:2/n:4]) gives the exact answer 4 for all values of n from 1 to 100, except n=35, 44, 51, 69, 92, or 100, which all give the same answer as quad.