You have an equal number of cups and balls, each labelled from one to N. You randomly place one ball in each cup. Determine the number of possible combinations such that no balls are in the cup with a matching number. For example, if you have three balls and three cups, there are two valid solutions:
- 2, 3, 1
- 3, 1, 2
The following permutations do not meet the criteria for the reasons listed:
- 1, 2, 3 (all three balls are in the correct cups)
- 1, 3, 2 (ball 1 is in cup 1)
- 3, 2, 1 (ball 2 is in cup 2)
- 2, 1, 3 (ball 3 is in cup 3)
Good luck!
Solution Stats
Problem Comments
2 Comments
Solution Comments
Show comments
Loading...
Problem Recent Solvers56
Suggested Problems
-
7233 Solvers
-
Calculate the Number of Sign Changes in a Row Vector (No Element Is Zero)
897 Solvers
-
Fix the last element of a cell array
1751 Solvers
-
Convert a Cell Array into an Array
2185 Solvers
-
Numbers spiral diagonals (Part 2)
196 Solvers
More from this Author80
Problem Tags
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!
I think that with this kind of problem, you can process in two steps.
A first easy problem with small N (to test perms for example). And a harder problem with big N, which
oblige to find another algorithm.
http://oeis.org/A000166