Ackermann's Function is a recursive function that is not 'primitive recursive.'
The first argument drives the value extremely fast.
A(m, n) =
- n + 1 if m = 0
- A(m − 1, 1) if m > 0 and n = 0
- A(m − 1,A(m, n − 1)) if m > 0 and n > 0
A(2,4)=A(1,A(2,3)) = ... = 11.
% Range of cases % m=0 n=0:1024 % m=1 n=0:1024 % m=2 n=0:128 % m=3 n=0:6 % m=4 n=0:1
There is some deep recusion.
Input: m,n
Out: Ackerman value
Ackermann(2,4) = 11
Practical application of Ackermann's function is determining compiler recursion performance.
Solution Stats
Problem Comments
2 Comments
Solution Comments
Show comments
Loading...
Problem Recent Solvers79
Suggested Problems
-
The Hitchhiker's Guide to MATLAB
3401 Solvers
-
Omit columns averages from a matrix
617 Solvers
-
Make an awesome ramp for a tiny motorcycle stuntman
748 Solvers
-
Replace multiples of 5 with NaN
466 Solvers
-
Convert given decimal number to binary number.
2272 Solvers
More from this Author308
Problem Tags
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!
Solution 15 is, to me, a novel cell array index implementation.
Efficiently to crash my Matlab.