Ackermann's Function is a recursive function that is not 'primitive recursive.'

Ackermann Function

The first argument drives the value extremely fast.

A(m, n) =

  • n + 1 if m = 0
  • A(m − 1, 1) if m > 0 and n = 0
  • A(m − 1,A(m, n − 1)) if m > 0 and n > 0

A(2,4)=A(1,A(2,3)) = ... = 11.

% Range of cases
% m=0 n=0:1024
% m=1 n=0:1024
% m=2 n=0:128
% m=3 n=0:6
% m=4 n=0:1

There is some deep recusion.

Input: m,n

Out: Ackerman value

Ackermann(2,4) = 11

Practical application of Ackermann's function is determining compiler recursion performance.

Solution Stats

257 Solutions

79 Solvers

Last Solution submitted on Dec 15, 2025

Last 200 Solutions

Problem Comments

Solution Comments

Show comments
Loading...