Conjugate Gradient Optimizer
% This example demonstrates the use of conjgrad.m
% The main advantage of conjgrad.m is that it takes handles to functions
% which perform the evaluation of the linear operator and its adjoint.
% The parameter space can be multidimensional.
%% Example #1 - matrix inversion
% generate well conditioned random matrix
N = 128;
[U,S,V]=svd(randn(N));
s=diag(S);
A=U*diag(s+max(s))*V;
b=randn(N,1);
% define the operator and its adjoint
operator = @(x) A*x;
adjoint = @(x) A'*x;
x0 = zeros(size(b));
res_limit = 1e-4;
max_steps = 100;
[x, Res] = conjgrad(x0, b, operator, adjoint, res_limit, max_steps);
plot(log10(Res));
%% Example #2 - deconvolution
N = 128;
% the convolution kernel is two dots. So the forward operator will make a
% twin-image shifted by 2 pixels.
kernel = zeros(N);
kernel(N/2,N/2) = 1;
kernel(N/2,N/2+2) = 1;
f_kernel = fft2(kernel);
test_image = randn(N);
% the adjoint of FFT is iFFT
% the adjoint of pointwise multiplication is multiplication by conjugate
operator = @(x) ifft2(f_kernel.*fft2(x));
adjoint = @(x) ifft2(conj(f_kernel).*fft2(x));
b = operator(test_image);
x0 = zeros(size(test_image));
res_limit = 1e-2;
max_steps = 100;
[x, Res] = conjgrad(x0, b, operator, adjoint, res_limit, max_steps);
plot(log10(Res))
Cite As
Peter (2023). Conjugate Gradient Optimizer (https://www.mathworks.com/matlabcentral/fileexchange/25636-conjugate-gradient-optimizer), MATLAB Central File Exchange. Retrieved .
MATLAB Release Compatibility
Platform Compatibility
Windows macOS LinuxCategories
Tags
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Discover Live Editor
Create scripts with code, output, and formatted text in a single executable document.
Version | Published | Release Notes | |
---|---|---|---|
1.0.0.0 |