File Exchange

image thumbnail

A probabilistic model of classifier competence

version (1.74 KB) by Tomasz Woloszynski
Classifier competence based on full vector of class supports and probabilistic modelling.


Updated 18 Apr 2012

View Version History

View License

In pattern recognition a common problem is to calculate competence of a classifier for a given object. Methods for calculating the competence currently developed are based only on crisp decision of the classifier, i.e. correct/incorrect classification.

The function ccprmod.m calculates the competence using full 1xC element vector of class supports produces by the classifier for the object, where C is the number of classes. The function is based on probabilistic modelling of class supports using C beta probability density functions (pdfs). First, parameters of the pdfs are defined in such a way that the expected value of each pdf is equal to the support given by the classifier for the respective class. A randomised reference classifier (RRC) is then constructed. The class supports of the RRC are random variables with the pdfs previously described. Finally, the classifier competence is calculated as the probability of correct classification of the RRC. For details, please see [1].

[1] Tomasz Woloszynski, Marek Kurzynski, A probabilistic model of classifier competence for dynamic ensemble selection, Pattern Recognition, Volume 44, Issues 10–11, October–November 2011, Pages 2656-2668

Cite As

Tomasz Woloszynski (2020). A probabilistic model of classifier competence (, MATLAB Central File Exchange. Retrieved .

Comments and Ratings (1)

Kenneth Seidman

The function or variable comple in the following line is not defined:
bi = betaincj(n,comple(t,C*B));

This prevents the function ccprmod from completing execution. Does anyone know what "comple" is supposed to be?

MATLAB Release Compatibility
Created with R2008a
Compatible with any release
Platform Compatibility
Windows macOS Linux

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!