FresnelS and FresnelC

Efficient and accurate computation of the Fresnel sine and cosine integrals
Updated 3 May 2012

View License

I noticed the many codes on the FEX to compute the Fresnel integrals for real arguments, and it left me wondering how I might try solving this problem in MATLAB for both high accuracy and high efficiency.

The approach I took yields a maximum error of roughly 1e-14 as far as I could get reasonable values to compare it to. (The screenshot shows the predicted error for a sampling of points.)

I've supplied functions for both the Fresnel sine and cosine integrals, as well as a .pdf file that explains the approach I took.

Evaluate the Fresnel cosine integral C(x) at x = 1.38

>> fresnelC(1.38,0)
ans =

Verify the correctness of this value using quadgk.

>> FresnelCObj = @(t) cos(pi*t.^2/2);
>> quadgk(FresnelCObj,0,1.38,'abstol',1e-15')
ans =

Now, how fast is fresnelC? Using Steve Eddins timeit code to yield an accurate estimate of the time required, we see that it is reasonably fast for scalar input.

>> timeit(@() fresnelC(1.38))
ans =

More importantly, these functions are properly vectorized. So 1 million evaluations are easy to do, and are much faster than 1 million times the time taken for one evaluation.

>> T = rand(1000000,1);
>> tic
>> FCpred = fresnelC(T);
>> toc
Elapsed time is 0.226884 seconds.

Cite As

John D'Errico (2024). FresnelS and FresnelC (, MATLAB Central File Exchange. Retrieved .

MATLAB Release Compatibility
Created with R2010a
Compatible with any release
Platform Compatibility
Windows macOS Linux

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Version Published Release Notes

Acknowledge two other files