Unscented Hellinger distance between GMMs
This is a demo code for the unscented Hellinger distance between a pair of Gaussian mixture models. The code follows the derivation of the multivariate unscented Hellinger distance introduced in [1]. Unlike the Kullback-Leibler divergence, the Hellinger distance is a proper metric between the distributions and is constrained to interval (0,1) with 0 meaning complete similarity and 1 complete dissimilarity.
[1] M. Kristan, A. Leonardis, D. Skočaj, "Multivariate online Kernel Density Estimation", Pattern Recognition, 2011. (url: http://vicos.fri.uni-lj.si/data/publications/KristanPR11.pdf)
Cite As
Matej Kristan (2024). Unscented Hellinger distance between GMMs (https://www.mathworks.com/matlabcentral/fileexchange/36164-unscented-hellinger-distance-between-gmms), MATLAB Central File Exchange. Retrieved .
MATLAB Release Compatibility
Platform Compatibility
Windows macOS LinuxCategories
- AI and Statistics > Statistics and Machine Learning Toolbox > Probability Distributions > Multivariate Distributions > Gaussian Mixture Distribution >
Tags
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Discover Live Editor
Create scripts with code, output, and formatted text in a single executable document.