Shelf Response for Two Incident Pulses

Shelf response for an identical pair of Gaussian pulses in the interface impinging upon the Shelf.
Updated 14 Apr 2013

View License

Information and Reference:
YouTube video: Resonant Shelf Response for Two Incident Pulses in the Interface Impinging upon the Shelf:

Calculates the Shelf Response for an identical pair of incident Gaussian pulses. Based on the article of Chapman, D. C. and G. S. Giese, 1990. J. Phys. Oceanogr. 20 1459-1467 pp. doi:<1459:AMFTGO>2.0.CO;2 The authors explain their model using these words: "The incident internal pulse at the interface generates a surface pulse at the shelf break with amplitude Q0/2 which travels across the shelf toward the coast. It's amplitude doubles to Q0 at the coast where it reflects from the coastal wall and travels back across the shelf toward the shelf break. Upon reaching the shelf break, part of the pulse is reflected shoreward while part continues into the deep ocean leaking energy to deep-ocean surface and internal waves." The incident pulses have a negative Gaussian Shape. The pulse width and amplitude can be set. The time shift between pulses can be set. The shelf depth and length, the deep-ocean upper layer depth, lower layer depth, total depth and respective densities can be changed to typical measured values. Restriction: the shelf depth is less than the deep-ocean upper layer depth: S < H1. To get the dimensional values of eta_s and zeta_pulse multiply each by eta_i; for u_s multiply by sqrt(g/H)*eta_i.

Cite As

Edwin Alfonso (2024). Shelf Response for Two Incident Pulses (, MATLAB Central File Exchange. Retrieved .

MATLAB Release Compatibility
Created with R12.1
Compatible with any release
Platform Compatibility
Windows macOS Linux

Inspired by: Shelf Response, Shelf Response KdV

Inspired: Shelf Response for two KdV Solitons

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Version Published Release Notes