image thumbnail

Abel Inversion Algorithm

version 1.5.0.0 (4.17 KB) by Carsten Killer
Fourier-based reconstruction of an unknown radial distribution assuming cylindrical symmetry.

3.7K Downloads

Updated 07 Mar 2016

View License

The reconstruction of the radial density distribution of a cylindrically symmetric object is a common task in different area of physics (e.g. plasma physics). Typically, optical measurements of objects like plasma columns or flames are integrated along the line of sight.
To obtain the underlying distribution from a measured projection, the inverse Abel transform has to be calculated.
This submission provides a Fourier-based algorithm which extracts the radial (2D) distribution from a one-dimensional projection measurement. The algorithm has been proposed and published by G. Pretzler (Z. Naturforsch. 46a, 639 (1991)). Compared to earlier approaches towards Abel inversion, this algorithm is relatively insensitive to noise and errors in the determination of the object's center (see G. Pretzler et al. , Z. Naturforsch. 47a, 955 (1994)).
The fundamental idea is to fit the whole measured profile to a set of cos-expansion-based integrals. (In the conventional approach, in contrast, the radial distribution is obtained by starting at the edges and incrementally iterating towards the center - making it more prone to errors.)

Cite As

Carsten Killer (2021). Abel Inversion Algorithm (https://www.mathworks.com/matlabcentral/fileexchange/43639-abel-inversion-algorithm), MATLAB Central File Exchange. Retrieved .

MATLAB Release Compatibility
Created with R2012b
Compatible with any release
Platform Compatibility
Windows macOS Linux

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!