image thumbnail

Singular Values

version (44.5 KB) by Crista Arangala
In this app users can explore singular values and see how they relate to orthogonal vectors.


Updated 30 Nov 2017

View License

Some square matrices are diagonalizable or even orthogonally diagonalizable. An important fact about diagonalization is that the resulting diagonal matrix contains the eigenvalues of the original matrix on the main diagonal. However, not all matrices are diagonalizable. In such a case, the singular value decomposition (SVD) still exists. If A is an m*n matrix, its singular values are the square roots of the eigenvalues of the matrix the transpose of A and A. This app shows the singular values of certain linear transformations in R^2, including rotation, dilation, and the sheer transformation of factor k. The blue square (with blue arrows) is the original region and the red region (with red arrows) is the transformed region. The singular values of the standard matrix affiliated with the transformation can be found when the transformed grid is orthogonal. Choose a transformation and rotation of the grid until it appears to be orthogonal; the length of the red arrows approaches the singular values of the standard matrix.

Cite As

Crista Arangala (2021). Singular Values (, MATLAB Central File Exchange. Retrieved .

MATLAB Release Compatibility
Created with R2017b
Compatible with any release
Platform Compatibility
Windows macOS Linux

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!