movingTrihedron
Given a curve in 'd' spatial coordinates, the function computes the associated 'moving trihedron' in terms of the unit tangent, -normal and -binormal at each point of the curve 'x'. The function returns the frame ['t', 'p','b'], corresponding to the tangent, normal and binormal, respectively.
To check that it works, compute e.g.
N = 100; nwinds = 2;
theta = linspace(0,nwinds*2*pi,N)';
L = theta/nwinds;
x = [cos(theta), sin(theta), L];
[t,p,b] = movingTrihedron(x);
refinement_factor = 10;
plot3(x(:,1),x(:,2),x(:,3),'k-')
hold on
quiver3(x(1:10:end,1),x(1:10:end,2),x(1:10:end,3),t(1:10:end,1),t(1:10:end,2),t(1:10:end,3))
quiver3(x(1:10:end,1),x(1:10:end,2),x(1:10:end,3),p(1:10:end,1),p(1:10:end,2),p(1:10:end,3))
quiver3(x(1:10:end,1),x(1:10:end,2),x(1:10:end,3),b(1:10:end,1),b(1:10:end,2),b(1:10:end,3))
Cite As
André Flakke (2025). movingTrihedron (https://www.mathworks.com/matlabcentral/fileexchange/74457-movingtrihedron), MATLAB Central File Exchange. Retrieved .
MATLAB Release Compatibility
Platform Compatibility
Windows macOS LinuxTags
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Discover Live Editor
Create scripts with code, output, and formatted text in a single executable document.