File Exchange

image thumbnail

movingTrihedron

version 1.0.1 (1.29 KB) by André Flakke
The function computes the 'moving trihedron' in terms of the unit tangent, normal and binormal.

0 Downloads

Updated 08 Mar 2020

View License

Given a curve in 'd' spatial coordinates, the function computes the associated 'moving trihedron' in terms of the unit tangent, -normal and -binormal at each point of the curve 'x'. The function returns the frame ['t', 'p','b'], corresponding to the tangent, normal and binormal, respectively.

To check that it works, compute e.g.

N = 100; nwinds = 2;
theta = linspace(0,nwinds*2*pi,N)';
L = theta/nwinds;

x = [cos(theta), sin(theta), L];

[t,p,b] = movingTrihedron(x);
refinement_factor = 10;

plot3(x(:,1),x(:,2),x(:,3),'k-')
hold on
quiver3(x(1:10:end,1),x(1:10:end,2),x(1:10:end,3),t(1:10:end,1),t(1:10:end,2),t(1:10:end,3))
quiver3(x(1:10:end,1),x(1:10:end,2),x(1:10:end,3),p(1:10:end,1),p(1:10:end,2),p(1:10:end,3))
quiver3(x(1:10:end,1),x(1:10:end,2),x(1:10:end,3),b(1:10:end,1),b(1:10:end,2),b(1:10:end,3))

Cite As

André Flakke (2020). movingTrihedron (https://www.mathworks.com/matlabcentral/fileexchange/74457-movingtrihedron), MATLAB Central File Exchange. Retrieved .

Comments and Ratings (0)

Updates

1.0.1

Added image for example script and editet sample script as described in the description.

MATLAB Release Compatibility
Created with R2019b
Compatible with any release
Platform Compatibility
Windows macOS Linux
Tags Add Tags