Computes coefficients needed for an analytic solution to the SEIR epidemic model.


Updated 27 Jun 2020

View License

%This computes the A_n coefficients, B_n coefficients, lambda_1, and f_infinity needed for the N-term SEIR approximant
%given as equation (15) in the preprint found at
%The inputs correspond to the number of terms N (must be even), SEIR parameters, and initial conditions as
%specified in equation (1) in the preprint. The code uses padeapprox.m [1], which implements the algorithm of [2].
%[2] P. Gonnet, S. Guettel, and L. N. Trefethen, "ROBUST PADE APPROXIMATION
% VIA SVD", SIAM Rev., 55:101-117, 2013.

% %%% example, reproducing figure 1b in Weinstein et. al.
% alpha=0.466089; beta=0.2; gamma=0.1; I0=0.05; S0=0.88; E0=0.07; R0=0; %input parameters
% t=0:0.1:100 %time interval 0 to 100 in increments of 0.1
% N=18; %number of terms in the approximant, increase until answer stops changing
% [A0,A,B,lambda_1,f_infinity]=ApproximantCoefficientsSEIR(N,alpha,beta,gamma,S0,E0,I0); %using the code provided to get the stuff needed below
% tv=t;clear t; syms t;
% f1=A0; f2=1;
% for j=1:N/2
% f1=f1+A(j)*t.^j;
% f2=f2+B(j)*t.^j;
% end
% FA=f_infinity+exp(lambda_1*t).*(f1./f2);
% dFA=diff(FA,t); t=tv; FA=eval(FA); dFA=eval(dFA);
% SA=exp(FA);
% IA=-1/beta*dFA;
% RA=R0-gamma/beta*(FA-log(S0));
% EA=gamma/beta*(FA-log(S0))-SA+dFA/beta+E0+I0+S0;
% plot(tv,SA,'r','displayname','S');hold on
% plot(tv,EA,'m','displayname','E')
% plot(tv,IA,'c','displayname','I')
% plot(tv,RA,'b','displayname','R'); legend show

Cite As

Nathaniel Barlow (2023). ApproximantCoefficientsSEIR (, MATLAB Central File Exchange. Retrieved .

MATLAB Release Compatibility
Created with R2020a
Compatible with any release
Platform Compatibility
Windows macOS Linux
Tags Add Tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Version Published Release Notes

A few things made more efficient and includes an example test-case in the comments.