ApproximantCoefficientsSEIR
%This computes the A_n coefficients, B_n coefficients, lambda_1, and f_infinity needed for the N-term SEIR approximant
%given as equation (15) in the preprint found at https://www.researchgate.net/publication/342211425_Analytic_solution_of_the_SEIR_epidemic_model_via_asymptotic_approximant
%The inputs correspond to the number of terms N (must be even), SEIR parameters, and initial conditions as
%specified in equation (1) in the preprint. The code uses padeapprox.m [1], which implements the algorithm of [2].
%
%[1] https://github.com/chebfun/chebfun/blob/master/padeapprox.m
%[2] P. Gonnet, S. Guettel, and L. N. Trefethen, "ROBUST PADE APPROXIMATION
% VIA SVD", SIAM Rev., 55:101-117, 2013.
% %%% example, reproducing figure 1b in Weinstein et. al.
% alpha=0.466089; beta=0.2; gamma=0.1; I0=0.05; S0=0.88; E0=0.07; R0=0; %input parameters
% t=0:0.1:100 %time interval 0 to 100 in increments of 0.1
% N=18; %number of terms in the approximant, increase until answer stops changing
% [A0,A,B,lambda_1,f_infinity]=ApproximantCoefficientsSEIR(N,alpha,beta,gamma,S0,E0,I0); %using the code provided to get the stuff needed below
% tv=t;clear t; syms t;
% f1=A0; f2=1;
% for j=1:N/2
% f1=f1+A(j)*t.^j;
% f2=f2+B(j)*t.^j;
% end
% FA=f_infinity+exp(lambda_1*t).*(f1./f2);
% dFA=diff(FA,t); t=tv; FA=eval(FA); dFA=eval(dFA);
% SA=exp(FA);
% IA=-1/beta*dFA;
% RA=R0-gamma/beta*(FA-log(S0));
% EA=gamma/beta*(FA-log(S0))-SA+dFA/beta+E0+I0+S0;
% plot(tv,SA,'r','displayname','S');hold on
% plot(tv,EA,'m','displayname','E')
% plot(tv,IA,'c','displayname','I')
% plot(tv,RA,'b','displayname','R'); legend show
Cite As
Nathaniel Barlow (2024). ApproximantCoefficientsSEIR (https://www.mathworks.com/matlabcentral/fileexchange/77007-approximantcoefficientsseir), MATLAB Central File Exchange. Retrieved .
MATLAB Release Compatibility
Platform Compatibility
Windows macOS LinuxTags
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Discover Live Editor
Create scripts with code, output, and formatted text in a single executable document.